Image stitching refers to the process of combining multiple images of the same scene to produce a single highresolution image, known as panorama stitching. The aim of this paper is to produce a high-quality stitched panorama image with less computation time. This is achieved by proposing four combinations of algorithms. First combination includes FAST corner detector, Brute Force K-Nearest Neighbor (KNN) and Random Sample Consensus (RANSAC). Second combination includes FAST, Brute Force (KNN) and Progressive Sample Consensus (PROSAC). Third combination includes ORB, Brute Force (KNN) and RANSAC. Fourth combination contains ORB, Brute Force (KNN) and PROSAC. Next, each combination involves a calculation of Transformation Matrix. The results demonstrated that the fourth combination produced a panoramic image with the highest performance and better quality compared to other combinations. The processing time is reduced by 67% for the third combination and by 68% for the fourth combination compared to stat-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.