To restrict the entry of polluting components into water bodies, particularly rivers, it is critical to undertake timely monitoring and make rapid choices. Traditional techniques of assessing water quality are typically costly and time-consuming. With the advent of remote sensing technologies and the availability of high-resolution satellite images in recent years, a significant opportunity for water quality monitoring has arisen. In this study, the water quality index (WQI) for the Hudson River has been estimated using Landsat 8 OLI-TIRS images and four Artificial Intelligence (AI) models, such as M5 Model Tree (MT), Multivariate Adaptive Regression Spline (MARS), Gene Expression Programming (GEP), and Evolutionary Polynomial Regression (EPR). In this way, 13 water quality parameters (WQPs) (i.e., Turbidity, Sulfate, Sodium, Potassium, Hardness, Fluoride, Dissolved Oxygen, Chloride, Arsenic, Alkalinity, pH, Nitrate, and Magnesium) were measured between 14 March 2021 and 16 June 2021 at a site near Poughkeepsie, New York. First, Multiple Linear Regression (MLR) models were created between these WQPs parameters and the spectral indices of Landsat 8 OLI-TIRS images, and then, the most correlated spectral indices were selected as input variables of AI models. With reference to the measured values of WQPs, the WQI was determined according to the Canadian Council of Ministers of the Environment (CCME) guidelines. After that, AI models were developed through the training and testing stages, and then estimated values of WQI were compared to the actual values. The results of the AI models’ performance showed that the MARS model had the best performance among the other AI models for monitoring WQI. The results demonstrated the high effectiveness and power of estimating WQI utilizing a combination of satellite images and artificial intelligence models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.