Context: During the development process of a software program, regression testing is used to ensure that the correct behavior of the software is retained after updates to the source code. This regression testing becomes costly over time as the number of test cases increases and it makes sense to prioritize test cases in order to execute fault-detecting test cases as soon as possible. There are many coverage-based test case prioritization (TCP) methods that only use the code coverage data to prioritize test cases. By incorporating the fault-proneness estimations of code units into the coverage-based TCP methods, we can improve such techniques.Objective: In this paper, we aim to propose an approach which improves coverage-based TCP methods by considering the fault-proneness distribution over code units. Further, we present the results of an empirical study that shows using our proposed approach significantly improves the additional strategy, which is a widely used coverage-based TCP method.Method: The approach presented in this study uses the bug history of the software in order to introduce a defect prediction method to learn a neural network model. This model is then used to estimate fault-proneness of each area of the source code and then the estimations are incorporated into coverage-based TCP methods. Our proposed approach is a general idea that can be applied to many coverage-based methods, such as the additional and total TCP methods.Results: The proposed methods are evaluated on datasets collected from the development history of five real-world projects including 357 versions in total. The experiments show that using an appropriate bug history can improve coverage-based TCP methods.Conclusion: The proposed approach can be applied to various coverage-based TCP methods and the experiments show that it can improve these methods by incorporating estimations of code units fault-proneness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.