Piles are frequently used to transfer the heavy compressive loads to strong soil layers located in the depth 11 of bed. In addition, such piles may be subjected to combination of repeated compressive and tensile loads due to 12 earthquake, wind, etc. This paper describes a series of laboratory model tests, at unit gravity, performed on belled pile,
This study evaluates the influence of polymer-modification on the induction heating capability of asphalt mastic in a microwave field, and investigates how effectively this approach can be utilized for ice melting and self-healing purposes. To this end, different asphalt mastic mixtures with different polymer-modification and mixing procedures were tested under microwave field exposure for induction heating capability, ice-melting ability, and self-healing capacity. The mixtures were made through warm-mix and hot-mix procedures with four bituminous binders, including virgin (unmodified) asphalt and the same binder modified with three types of polymers. The results showed the effectiveness of microwave induction heating of asphalt mastic for both crack-healing and deicing purposes. The binder type was found to influence the ice melting and crack healing rates, such that using a warm-mix asphalt binder resulted in a more efficient heat generation and conduction than using a virgin asphalt binder. While polymer-modification undermined induction-heating, ice-melting, and self-healing performances, SBS-modified asphalt binders exhibited better performance than the other polymer-modified binders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.