Today, fog and cloud computing environments can be used to further develop the Internet of Things (IoT). In such environments, task scheduling is very efficient for executing user requests, and the optimal scheduling of IoT task requests increases the productivity of the IoT-fog-cloud system. In this paper, a hybrid meta-heuristic (MH) algorithm is developed to schedule the IoT requests in IoT-fog-cloud networks using the Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) called AO_AVOA. In AO_AVOA, the exploration phase of AVOA is improved by using AO operators to obtain the best solution during the process of finding the optimal scheduling solution. A comparison between AO_AVOA and methods of AVOA, AO, Firefly Algorithm (FA), particle swarm optimization (PSO), and Harris Hawks Optimization (HHO) according to performance metrics such as makespan and throughput shows the high ability of AO_AVOA to solve the scheduling problem in IoT-fog-cloud networks.
With the advent of the Internet of Things (IoT), e-health has become one of the main topics of research. Due to the sensitivity of patient information, patient privacy seems challenging. Nowadays, patient data is usually stored in the cloud in healthcare programs, making it difficult for users to have enough control over their data. The recent increment in announced cases of security and surveillance breaches compromising patients' privacy call into question the conventional model, in which third-parties gather and control immense amounts of patients' Healthcare data. In this work, we try to resolve the issues mentioned above by using blockchain technology. We propose a blockchain-based protocol suitable for ehealth applications that does not require trust in a third party and provides an efficient privacypreserving access control mechanism. Transactions in our proposed system, unlike Bitcoin, are not entirely financial, and we do not use conventional methods for consensus operations in blockchain like Proof of Work (PoW). It is not suitable for IoT applications because IoT devices have resourcesconstraints. Usage of appropriate consensus method helps us to increase network security and efficiency, as well as reducing network cost, i.e., bandwidth and processor usage. Finally, we provide security and privacy analysis of our proposed protocol.
The emergence of the Internet of Things (IoT) has resulted in a significant increase in research on e-health. As the amount of patient data grows, it has become increasingly challenging to protect patients' privacy. Patient data is commonly stored in the cloud, making it difficult for users to control and protect their information. Moreover, the recent rise in security and surveillance breaches in the healthcare industry has highlighted the need for a better approach to data storage and protection. Traditional models that rely on third-party control over patients' healthcare data are no longer reliable, as they have proven vulnerable to security breaches. To address these issues, blockchain technology has emerged as a promising solution. Blockchain-based protocols have the potential to provide a secure and efficient system for e-health applications that does not require trust in third-party intermediaries. The proposed protocol outlined in this paper uses a blockchain-based approach to manage patient data securely and efficiently. Unlike Bitcoin, which is primarily used for financial transactions, the protocol described here is designed specifically for e-health applications. It employs a consensus mechanism that is more suitable for resource constrained IoT devices, thereby reducing network costs and increasing efficiency. The proposed protocol also provides a privacy-preserving access control mechanism that enables patients to have more control over their healthcare data. By leveraging blockchain technology, the protocol ensures that only authorized individuals can access the patient's data, which helps prevent data breaches and other security issues. Finally, the security and privacy of the proposed protocol are analysed to ensure that it meets the necessary standards for data protection. The protocol's effectiveness and efficiency are tested under different scenarios to ensure that it can perform reliably and consistently. Finally, the protocol proposed in this paper shows that how blockchain can be used to provide a secure and efficient system that empowers patients to take control of their healthcare data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.