Background and Aims
All components of the immune system are involved in alleviating severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. Further research is required to provide detailed insights into COVID‐19‐related immune compartments and pathways. In addition, a significant percentage of hospitalized COVID‐19 patients suspect bacterial infections and antimicrobial resistance occurs following antibiotics treatment. The aim of this study was to evaluate the possible effects of antibiotics on the response of neutrophil‐related genes in SARS‐CoV‐2 patients by an experimental in silico study.
Methods
The two data sets GSE1739 and GSE21802 including 10 SARS positive patients and 35 influenza A (H1N1) patients were analyzed, respectively. Differentially expressed genes (DEGs) between these two data sets were determined by GEO2R analysis and the Venn diagram online tool. After determining the hub genes involved in immune responses, the expression of these genes in 30 COVID‐19 patients and 30 healthy individuals was analyzed by real‐time polymerase chain reaction (PCR). All patients received antibiotics, including levofloxacin, colistin, meropenem, and ceftazidime.
Results
GEO2R analysis detected 240 and 120 DEGs in GSE21802 and GSE1739, respectively. Twenty DEGs were considered as enriched hub genes involved in immune processes such as neutrophil degranulation, neutrophil activation, and antimicrobial humoral response. The central nodes were attributed to the genes of neutrophil elastase (ELANE), arginase 1 (ARG‐1), lipocalin 2 (LCN2), and defensin 4 (DEFA4). Compared to the healthy subjects, the expression of LCN2 and DEFA4 were significantly reduced in COVID‐19 patients. However, no significant differences were observed in the ELANE and AGR‐1 levels between COVID‐19 subjects and the control group.
Conclusions
Activation and degranulation of neutrophils were observed mainly in SARS, and H1N1 infection processes and antibiotics administration could affect neutrophil activity during viral infection. It can be suggested that antibiotics can decrease inflammation by restoring the expression of neutrophil‐related genes in COVID‐19 patients.
Hereditary spastic paraplegia is a not common inherited neurological disorder with heterogeneous clinical expressions. ALDH18A1 (located on 10q24.1) gene-related spastic paraplegias (SPG9A and SPG9B) are rare metabolic disorders caused by dominant and recessive mutations that have been found recently. Autosomal recessive hereditary spastic paraplegia is a common and clinical type of familial spastic paraplegia linked to the SPG11 locus (locates on 15q21.1). There are different symptoms of spastic paraplegia, such as muscle atrophy, moderate MR, short stature, balance problem, and lower limb weakness. Our first proband involves a 45 years old man and our second proband involves a 20 years old woman both are affected by spastic paraplegia disease. Genomic DNA was extracted from the peripheral blood of the patients, their parents, and their siblings using a filter-based methodology and quantified and used for molecular analysis and sequencing. Sequencing libraries were generated using Agilent SureSelect Human All ExonV7 kit, and the qualified libraries are fed into NovaSeq 6000 Illumina sequencers. Sanger sequencing was performed by an ABI prism 3730 sequencer. Here, for the first time, we report two cases, the first one which contains likely pathogenic NM_002860: c.475C>T: p.R159X mutation of the ALDH18A1 and the second one has likely pathogenic NM_001160227.2: c.5454dupA: p.Glu1819Argfs Ter11 mutation of the SPG11 gene and also was identified by the whole-exome sequencing and confirmed by Sanger sequencing. Our aim with this study was to confirm that these two novel variants are direct causes of spastic paraplegia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.