We propose an adaptive run-time failure recovery control system for quadcopter drones, based on remote real-time processing of measurement data streams. Particularly, the measured RPM values of the quadcopter motors are transmitted to a remote machine which hosts failure detection algorithms and performs recovery procedure. The proposed control system consists of three distinct parts: (1) A set of computationally simple PID controllers locally onboard the drone, (2) a set of computationally more demanding remotely hosted algorithms for real-time drone state detection, and (3) a digital twin co-execution software platform — the ModelConductor-eXtended — for two-way signal data exchange between the former two. The local on-board control system is responsible for maneuvering the drone in all conditions: path tracking under normal operation and safe landing in a failure state. The remote control system, on the other hand, is responsible for detecting the state of the drone and communicating the corresponding control commands and controller parameters to the drone in real time. The proposed control system concept is demonstrated via simulations in which a drone is represented by the widely studied Quad-Sim six degrees-of-freedom Simulink model. Results show that the trained failure detection binary classifier achieves a high level of performance with F1-score of 96.03%. Additionally, time analysis shows that the proposed remote control system, with average execution time of 0.49 milliseconds and total latency of 6.92 milliseconds in two-way data communication link, meets the real-time constraints of the problem. The potential practical applications for the presented approach are in drone operation in complex environments such as factories (indoor) or forests (outdoor).
We propose an adaptive run-time failure recovery control system for quadcopter drones, based on remote real-time processing of measurement data streams. Particularly, the measured RPM values of the quadcopter motors are transmitted to a remote machine which hosts failure detection algorithms and performs recovery procedure. The proposed control system consists of three distinct parts: (1) A set of computationally simple PID controllers locally onboard the drone, (2) a set of computationally more demanding remotely hosted algorithms for real-time drone state detection, and (3) a digital twin co-execution software platform — the ModelConductor-eXtended — for two-way signal data exchange between the former two. The local on-board control system is responsible for maneuvering the drone in all conditions: path tracking under normal operation and safe landing in a failure state. The remote control system, on the other hand, is responsible for detecting the state of the drone and communicating the corresponding control commands and controller parameters to the drone in real time. The proposed control system concept is demonstrated via simulations in which a drone is represented by the widely studied Quad-Sim six degrees-of-freedom Simulink model. Results show that the trained failure detection binary classifier achieves a high level of performance with F1-score of 96.03%. Additionally, time analysis shows that the proposed remote control system, with average execution time of 0.49 milliseconds and total latency of 6.92 milliseconds in two-way data communication link, meets the real-time constraints of the problem. The potential practical applications for the presented approach are in drone operation in complex environments such as factories (indoor) or forests (outdoor).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.