Chronic wound management is a difficult area in surgical practice. A wide range of dressings have been recommended for the management of chronic wounds. The present meta-analysis was undertaken to determine the effectiveness of hydrocolloid dressing (HCD) in the healing of chronic wounds compared with conventional gauze dressing. All available controlled clinical trials published before December 2001 that compared HCD to conventional gauze dressing in the healing of chronic wounds were systematically reviewed. We identified and analysed 12 randomized trials (11 published; 1 unpublished) comprising 693 patients with 819 ulcers. The overall odds ratio under the fixed effect model was 1.72, that is, 72% more ulcers healed completely with HCD than with conventional gauze dressing. This result was both clinically and statistically significant.
Personalized itinerary recommendation has garnered wide research interests for their ubiquitous applications. Recommending personalized itineraries is complex because of the large number of points of interest (POI) to consider in order to construct an itinerary based on visitors’ interest and preference, time budget and uncertain queuing time. Previous studies typically aim to plan itineraries that maximize POI popularity, visitors’ interest and minimize queuing time. However, existing solutions may not reflect visitor preferences because when creating itineraries, they prefer to recommend POIs with short prior visiting periods. These recommendations can conflict with real-life scenarios as visitors typically spend less time at POIs that they do not enjoy, thus leading to the inclusion of unsuitable POIs. Moreover, constructing itineraries based on selected POIs is a challenging and time-consuming process. Existing approaches involve searching through a large number of non-optimal, duplicate itineraries that are time-consuming to review and generate. To address these issues, we propose an adaptive Monte Carlo tree search (MCTS)-based reinforcement learning algorithm EffiTourRec using an effective POI selection strategy by giving preference to POIs with long visiting times and short queuing times along with high POI popularity and visitor interest. In addition, to reduce non-optimal and duplicated itineraries generation, we propose an efficient MCTS search pruning technique to explore a smaller, more promising portion of solution space. Experiment results in real theme park datasets show clear advantages of our proposed method over baselines, where our method outperforms the current state-of-the-art by 20.89 to 52.32% in precision, 8.36 to 21.35% in F1-score and 40.00 to 67.64% in execution time.
Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.