Background:P300 signal detection is an essential problem in many fields of Brain-Computer Interface (BCI) systems. Although deep neural networks have almost ubiquitously used in P300 detection, in such networks, increasing the number of dimensions leads to growth ratio of saddle points to local minimums. This phenomenon results in slow convergence in deep neural network. Hyperparameter tuning is one of the approaches in deep learning, which leads to fast convergence because of its ability to find better local minimums. In this paper, a new adaptive hyperparameter tuning method is proposed to improve training of Convolutional Neural Networks (CNNs).Methods:The aim of this paper is to introduce a novel method to improve the performance of deep neural networks in P300 signal detection. To reach this purpose, the proposed method transferred the non-convex error function of CNN) into Lagranging paradigm, then, Newton and dual active set techniques are utilized for hyperparameter tuning in order to minimize error of objective function in high dimensional space of CNN.Results:The proposed method was implemented on MATLAB 2017 package and its performance was evaluated on dataset of Ecole Polytechnique Fédérale de Lausanne (EPFL) BCI group. The obtained results depicted that the proposed method detected the P300 signals with 95.34% classification accuracy in parallel with high True Positive Rate (i.e., 92.9%) and low False Positive Rate (i.e., 0.77%).Conclusions:To estimate the performance of the proposed method, the achieved results were compared with the results of Naive Hyperparameter (NHP) tuning method. The comparisons depicted the superiority of the proposed method against its alternative, in such way that the best accuracy by using the proposed method was 6.44%, better than the accuracy of the alternative method.
Background:
Deep neural networks have been widely used in detection of P300 signal in Brain Machine Interface (BMI) systems which are rely on Event-Related Potentials (ERPs) (i.e. P300 signals). Such networks have high curvature variation in their error surface hampering their favorable performance. Therefore, the variations in curvature of the error surface must be minimized to improve the performance of these networks in detecting P300 signals.
Objective:
The aim of this paper is to introduce a method for minimizing the curvature of the error surface during training Convolutional Neural Network (CNN). The curvature variation of the error surface is highly dependent on model parameters of deep neural network; therefore, we try to minimize this curvature by optimizing the model parameters.
Material and Methods:
In this experimental study an attempt is made to tune the CNN parameters affecting the curvature of its error surface in order to obtain the best possible learning. For achieving this goal, Genetic Algorithm is utilized to optimize the above parameters in order to minimize the curvature variations.
Results:
The performance of the proposed algorithm was evaluated on EPFL dataset. The obtained results demonstrated that the proposed method detected the P300 signals with maximally 98.91% classification accuracy and 98.54% True Positive Ratio (TPR).
Conclusion:
The obtained results showed that using genetic algorithm for minimizing curvature of the error surface in CNN increased its accuracy in parallel with decreasing the variance of the results. Consequently, it may be concluded that the proposed method has considerable potential to be used as P300 detection module in BMI applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.