This study aimed to explore the effect of coptisine on non-small-cell lung cancer and its mechanism through various in vitro cellular models (A549). Results claimed significant inhibition of proliferation by coptisine against A549, H460, and H2170 cells with IC 50 values of 18.09, 29.50, and 21.60 µM, respectively. Also, coptisine exhibited upregulation of pH2AX, cell cycle arrest at G2/M phase, and downregulation of the expression of cyclin B1, cdc2, and cdc25C and upregulation of p21 dose dependently. Furthermore, induction of apoptosis in A549 cells by coptisine was characterized by the activation of caspase 9, caspase 8, and caspase 3, and cleavage of poly adenosine diphosphate ribose polymerase. In addition, coptisine was found to increase reactive oxygen species generation, upregulate Bax/Bcl-2 ratio, disrupt mitochondrial membrane potential, and cause cytochrome c release into the cytosol. Besides, treatment with a reactive oxygen species inhibitor (N-acetyl cysteine) abrogated coptisine-induced growth inhibition, apoptosis, reactive oxygen species generation, and mitochondrial dysfunction. Thus, the mediation of reactive oxygen species in the apoptosisinduced effect of coptisine in A549 cells was corroborated. These findings have offered new insights into the effect and mechanisms of action of coptisine against non-small-cell lung cancer.
Considerable interest has been gained by withasteroids because of their structural uniqueness and wide spectrum of biological activities. However, limited systematic studies for proving their cytotoxic potential have so far been reported. Hence, an attempt was made to test the cytotoxicity of six withasteroids viz., withametelin (WM), withaphysalin D, withaphysalin E, 12-deoxywithastramonolide, Withaperuvin B, and physalolactone against A549, HT-29, and MDA-MB-231 cancer cell lines. Significant cytotoxic effect of WM against A549 cells (IC value of 6.0 μM), MDA-MB-231 cells (IC value of 7.6 μM), and HT-29 cells (IC value of 8.2 μM) was observed. Withaperuvin B and physalolactone were found to be effective against MDA-MB-231 cells. The significantly active WM arrested the A549 cells at G2/M phase and downregulated the expression of G2/M regulatory proteins such as cdc2, cyclin B1, and cdc25C. Apoptosis induced by WM in A549 cells was associated with the generation of ROS and depletion of MMP. Furthermore, WM treatment resulted in Bax upregulation, Bcl-2 downregulation, translocation of cytochrome c to mitochondria, activation of caspase-9 and -3, and PARP cleavage corroborating the apoptosis induction through intrinsic apoptotic pathway. Thus, WM possessing broader cytotoxic effect is a promising lead molecule which has the potential to be developed as a new therapeutic agent for NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.