Recently the effect of greenhouse gases (GHGs) is worldwide terrified anxiety to the public and scholars. Even this global problem is one of the great issues that continuously makes worrying the governments and environmentalists, but its solution findings are not out of the image at all. In this study, we have proposed and analysed a mathematical model for the solvable management of GHGs by sowing the seeds of green building dynamic systems. Moreover, in the model, the human community is used to enhance the production power of individuals of green buildings by absorbing the GHGs. The model is analysed by stability analysis at the equilibrium points: trivial and global equilibrium, and also by convincing the stability and instability of the system of equations. The behaviour of the propound model has been developed by numerical simulations which shows the rate of the fruitfulness of GHG components.
COVID-19 is one of the most highly infectious diseases ever emerged and caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has already led the entire world to health and economic crisis. It has invaded the whole universe all most every way. The present study demonstrates with a nine mutually exclusive compartmental model on transmission dynamics of this pandemic disease (COVID-19), with special focus on the transmissibility of symptomatic and asymptomatic infection from susceptible individuals. Herein, the compartmental model has been investigated with mathematical analysis and computer simulations in order to understand the dynamics of COVID-19 transmission. Initially, mathematical analysis of the model has been carried out in broadly by illustrating some well-known methods including exactness, equilibrium and stability analysis in terms of basic reproduction number. We investigate the sensitivity of the model with respect to the variation of the parameters' values. Furthermore, computer simulations are performed to illustrate the results. Our analysis reveals that the death rate from coronavirus disease increases as the infection rate increases, whereas infection rate extensively decreases with the increase of quarantined individuals. The quarantined individuals also lead to increase the concentration of recovered individuals. However, the infection rate of COVID-19 increases more surprisingly as the rate of asymptomatic individuals increases than that of the symptomatic individuals. Moreover, the infection rate decreases significantly due to increase of self-immunity rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.