A new macroscopic traffic flow model is proposed, which considers driver presumption based on driver reaction and traffic stimuli. The Payne–Whitham (PW) model characterizes the traffic flow based on a velocity constant C 0 which results in unrealistic density and velocity behavior. Conversely, the proposed model characterizes traffic behavior with velocities based on the distance headway. The performance of the proposed and PW models is evaluated over a 300 m circular road for an inactive bottleneck. The results obtained show that the traffic behavior with the proposed model is more realistic.
A novel approach to determine optimal sampling locations under parameter uncertainty in a water distribution system (WDS) for the purpose of its hydraulic model calibration is presented. The problem is formulated as a multi-objective optimisation problem under calibration parameter uncertainty. The objectives are to maximise the calibrated model accuracy and to minimise the number of sampling devices as a surrogate of sampling design cost. Model accuracy is defined as the average of normalised traces of model prediction covariance matrices, each of which is constructed from a randomly generated sample of calibration parameter values. To resolve the computational time issue, the optimisation problem is solved using a multi-objective genetic algorithm and adaptive neural networks (MOGA-ANN). The verification of results is done by comparison of the optimal sampling locations obtained using the MOGA-ANN model to the ones obtained using the Monte Carlo Simulation (MCS) method. In the MCS method, an equivalent deterministic sampling design optimisation problem is solved for a number of randomly generated calibration model parameter samples.The results show that significant computational savings can be achieved by using MOGA-ANN compared to the MCS model or the GA model based on all full fitness evaluations without significant decrease in the final solution accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.