Large scale wireless sensor networks (WSNs) can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA) is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.
As typical wireless sensor networks (WSNs) have resource limitations, predistribution of secret keys is possibly the most practical approach for secure network communications. In this paper, we propose a key management scheme based on random key predistribution for heterogeneous wireless sensor networks (HSNs). As large-scale homogeneous networks suffer from high costs of communication, computation, and storage requirements, the HSNs are preferred because they provide better performance and security solutions for scalable applications in dynamic environments. We consider hierarchical HSN consisting of a small number high-end sensors and a large number of low-end sensors. To address storage overhead problem in the constraint sensor nodes, we incorporate a key generation process, where instead of generating a large pool of random keys, a key pool is represented by a small number of generation keys. For a given generation key and a publicly known seed value, a keyed-hash function generates a key chain; these key chains collectively make a key pool. As dynamic network topology is native to WSNs, the proposed scheme allows Scalable and efficient key management for heterogeneous 45 dynamic addition and removal of nodes. This paper also reports the implementation and the performance of the proposed scheme on Crossbow's MicaZ motes running TinyOS. The results indicate that the proposed scheme can be applied efficiently in resource-constrained sensor networks. We evaluate the computation and storage costs of two keyed-hash algorithms for key chain generation, HMAC-SHA1 and HMAC-MD5.
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms.
Key distribution refers to the problem of establishing shared secrets on sensor nodes such that secret symmetric keys for communication privacy, integrity and authenticity can be generated. In a wireless sensor network, pre-distribution of secret keys is possibly the most practical approach to protect network communications but it is difficult due to the ad hoc nature, intermittent connectivity, and resource limitations of the sensor networks. In this paper, we propose a key distribution scheme based on random key pre-distribution for heterogeneous sensor network (HSN) to achieve better performance and security as compared to homogeneous network which suffer from high communication overhead, computation overhead, and/or high storage requirements. In a key generation process, instead of generating a large pool of random keys, a key pool is represented by a small number of generation keys. For a given generation key and publicly known seed value, a one-way hash function generates a key chain, and these key chains collectively make a key pool. Each sensor node is assigned a small number of randomly selected generation keys. The proposed scheme reduces the storage requirements while maintaining the same security strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.