A biophysical survey was conducted in 15 cotton-growing districts of Pakistan. Four hundred cotton growers were approached and inquired about the production technology of Bt cotton. Further, 25 strip tests using combo strips ( Cry1Ac, Cry2Ab, Vip3Aa and Cp4, EPSPS gene) were performed at each farmer’s field. Out of 10,000 total-tested samples, farmers claimed 9682 samples as Bt and 318 samples as non-Bt. After performing a strip test, 1009 and 87 samples were found false negative and false positive, respectively. Only 53 samples were found positive for Cry2Ab , 214 for EPSPS and none for Vip3Aa gene. Quantification of Cry endotoxin and bioassay studies were performed by taking leaves from upper, middle, and lower canopies, and fruiting parts at approximately 80 days after sowing from 89 varieties. Expression was highly variable among different canopies and fruiting parts. Moreover, Cry endotoxin expression and insect mortality varied significantly among varieties from 0.26 µg g −1 to 3.54 µg g −1 with mortality ranging from 28 to 97%, respectively. Highest Cry1Ac expression (3.54 µg g −1 ) and insect mortality (97%) were observed for variety FH-142 from DG Khan. Cry endotoxin expression varied significantly across various plant parts, i.e., IUB-13 variety from upper canopy documented 0.34 µg g −1 expression with 37% insect mortality in Layyah to 3.42 µg g −1 expression and 96% insect mortality from DG Khan. Lethal dose, LD95 (2.20 µg g −1 ) of Cry1Ac endotoxin was optimized for effective control of H. armigera . Our results provided evidence of practical resistance in H. armigera and way forward.
Nicotinamide adenine dinucleotide (NAD + ) has recently attracted much attention due to its role in aging and lifespan extension. NAD + directly and indirectly affects many cellular processes, including metabolic pathways, DNA repair, and immune cell activities. These mechanisms are critical for maintaining cellular homeostasis. However, the decline in NAD + levels with aging impairs tissue function, which has been associated with several age-related diseases. In fact, the aging population has been steadily increasing worldwide, and it is important to restore NAD + levels and reverse or delay these age-related disorders. Therefore, there is an increasing demand for healthy products that can mitigate aging, extend lifespan, and halt age-related consequences. In this case, several studies in humans and animals have targeted NAD + metabolism with NAD + intermediates. Among them, nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of NAD + , has recently received much attention from the scientific community for its anti-aging properties. In model organisms, ingestion of NMN has been shown to improve age-related diseases and probably delay death. Here, we review aspects of NMN biosynthesis and the mechanism of its absorption, as well as potential anti-aging mechanisms of NMN, including recent preclinical and clinical tests, adverse effects, limitations, and perceived challenges.
Infections caused by helminths are responsible for severe public health problems and economic burden on continental scale. Well-timed and precise diagnosis of helminth infections is critical for taking by appropriate approaches for pathogen control. Circulating miRNAs are stable diagnostic tool for different diseases found in a variety of body fluid. As diagnostic biomarkers in infectious diseases, miRNAs detection in body fluids of helminth infected hosts is growing promptly. Uncovering miRNAs is a relatively new tool, used for early-stage detection of helminth infection from experimental or non-invasive clinical samples. miRNAs can be detected in body fluids such as serum, saliva, urine, and tissues of helminth infected host, mainly blood offering important benefits for diagnosis accurately. In this review, we discuss different characteristics of helminth parasite-derived circulating and EV miRNAs, supporting its potential uses in for helminth diagnosis and treatment efficiency.
Soil Microbiologists have been concentrating on manipulation of rhizosphere microbes in cereals, but many researchers have reported that rhizobia can act as plant growth promoting rhizobacteria (PGPR). Rhizobium species impacted the crop ontogeny by root / endophytic colonization, producing phytohormones, efficient nutrient use and nutrient solubilization / mineralization. Field studies were performed at Soil Bacteriology Section and Soil Chemistry Section, Faisalabad to assess the comparative potential of Rhizobium species for promoting the growth, yield of wheat and rice. Auxin biosynthesis potential of isolates of Rhizobium species (mung (Vigna radiata), berseem (Trifolium alexandrinum), chickpea (Cicer arietinum), lentil (Lens culinaris) and peanut (Arachis hypogaea)) was determined and isolates of each species having higher values were used for field experiments. Assay for root / shoot elongation, root colonization in plates were carried out under controlled conditions. The rhizosphere soil of wheat and rice were assayed for the Indole Acedic Acid (IAA) content 15 and 30 days after germination / transplanting, respectively. Results revealed that significant increase was observed in the yield parameters of wheat and rice. Highest wheat grains were produced i.e., 4917 kg ha-1 with Rhizobium sp of mungbean (Mb3) followed by 4823 with Rhizobium sp of berseem (Br3) than control i.e., 4500 kg ha-1. Similarly, the maximum paddy yield i.e., 4667 kg ha-1 with Rhizobium sp of mungbean (Mb3) followed by 4625 Rhizobium sp of berseem (Br3) inoculation was obtained as compared to control i.e., 4208 kg ha-1. Other physical parameters of wheat and rice also showed positive response to inoculation and have elevated levels of IAA in the rhizosphere of inoculated treatments. Results clearly demonstrated that Rhizobium species increased the yield of rice and wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.