Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) having antipyretic and analgesic properties, mainly used for the treatment of rheumatoid arthritis and osteoarthritis. Eryptosis is an alternative term used for suicidal erythrocyte death. In the current study, eryptotic effect of naproxen sodium characterized by membrane blebbing was investigated in erythrocytes after 48 hours of treatment with different concentrations (1-25 µM). The experimental work related to investigation of eryptosis was done by cell size measurement and confirmation of calcium role in the induction of membrane blebbing. As a possible mechanism of eryptosis, oxidative stress induced by naproxen sodium was determined by catalase, glutathione peroxidase, and superoxide dismutase activities. Similarly, hemolytic effect of naproxen sodium was also determined by hemolysis measurement. Results of our study illustrated that the therapeutic doses (10-25 µM) of naproxen sodium induce oxidative stress, confirmed by significant decrease in superoxide dismutase, catalase, and glutathione peroxidase activities that lead to the triggering of cell death by eryptosis and hemolysis.
Omeprazole, a proton pump inhibitor blocks the H+/K+-ATPase channels of gastric parietal cells. It is used for the treatment of peptic ulcer. Prolonged use of omeprazole may involve in inducing anemia. The key marker of eryptosis includes membrane blebbing, cell shrinkage and phosphatidylserine (PS) exposure at the cell surface. In current study, the eryptotic, oxidative as well as hemolytic effects of therapeutical doses (0.5, 1 and 1.5 µM) of omeprazole were investigated after exposing erythrocytes for 48 hours. Investigation of eryptosis was done by cell size measurement, PS exposure determination and calcium channel inhibition. As a possible mechanism of omeprazole induced eryptosis, oxidative stress was investigated by determining the catalase, glutathione peroxidase and superoxide dismutase activities. Similarly, necrotic effect of omeprazole on erythrocytes was also evaluated through hemolysis measurement. Results of our study illustrated that 1.5 µM of omeprazole may induce significant decrease in superoxide dismutase, glutathione peroxidase and catalase activities as well as triggered the erythrocytes shrinkage, PS exposure and hemolysis. Role of calcium was also confirmed in inducing erythrocyte shrinkage. It is concluded that the exposure of erythrocytes with 1.5 µM omeprazole may enhance the rate of eryptosis and hemolysis by inducing oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.