Abstract:In wireless sensor networks, detection and tracking of continuous natured objects is more challenging owing to their unique characteristics such as uneven expansion and contraction. A continuous object is usually spread over a large area, and, therefore, a substantial number of sensor nodes are needed to detect the object. Nodes communicate with each other as well as with the sink to exchange control messages and report their detection status. The sink performs computations on the received data to estimate the object boundary. For accurate boundary estimation, nodes at the phenomenon boundary need to be carefully selected. Failure of one or multiple boundary nodes (BNs) can significantly affect the object detection and boundary estimation accuracy at the sink. We develop an efficient failure-prone object detection approach that not only detects and recovers from BN failures but also reduces the number and size of transmissions without compromising the boundary estimation accuracy. The proposed approach utilizes the spatial and temporal features of sensor nodes to detect object BNs. A Voronoi diagram-based network clustering, and failure detection and recovery scheme is used to increase boundary estimation accuracy. Simulation results show the significance of our approach in terms of energy efficiency, communication overhead, and boundary accuracy.
Climate change is unexpected weather patterns that can create an alarming situation. Due to climate change, various sectors are affected, and one of the sectors is healthcare. As a result of climate change, the geographic range of several vector-borne human infectious diseases will expand. Currently, dengue is taking its toll, and climate change is one of the key reasons contributing to the intensification of dengue disease transmission. The most important climatic factors linked to dengue transmission are temperature, rainfall, and relative humidity. The present study carries out a systematic literature review on the surveillance system to predict dengue outbreaks based on Machine Learning modeling techniques. The systematic literature review discusses the methodology and objectives, the number of studies carried out in different regions and periods, the association between climatic factors and the increase in positive dengue cases. This study also includes a detailed investigation of meteorological data, the dengue positive patient data, and the pre-processing techniques used for data cleaning. Furthermore, correlation techniques in several studies to determine the relationship between dengue incidence and meteorological parameters and machine learning models for predictive analysis are discussed. In the future direction for creating a dengue surveillance system, several research challenges and limitations of current work are discussed.
In wireless sensor networks, utilization of mobile sinks is effective in reducing energy consumption thus enhancing the network lifetime longevity and improving connectivity. Most of the data delivery schemes which support sink mobility assume the construction of virtual hierarchies of either backbone or rendezvous nodes. These designated nodes try to minimize the communication overhead of tracking mobile sink by avoiding network-wide flooding of sink location updates. However, timely and efficient construction of such virtual infrastructure prior to actual data delivery is a challenging task in networks which mainly consist of resource constrained sensor nodes. In this paper, a neighbor-assisted sink tracking scheme is described that provides efficient data delivery to the mobile sink without requiring virtual hierarchies. In the proposed scheme, nodes within the close proximity of sink collaborate and provide feedback on its connectivity with rest of the network. Through extensive simulations under several multi-hop traffic scenarios, it is shown that the proposed scheme performs significantly better in terms of energy consumption, success ratio and latency with a static and mobile sink.
WLAN based localization is a key technique of location-based services (LBS) indoors. However, the indoor environment is complex; received signal strength (RSS) is highly uncertain, multimodal, and nonlinear. The traditional location estimation methods fail to provide fair estimation accuracy under the said environment. We proposed a novel indoor positioning system that considers the nonlinear discriminative feature extraction of RSS using kernel local Fisher discriminant analysis (KLFDA). KLFDA extracts location features in a well-preserved kernelized space. In the new kernel featured space, nonlinear RSS features are characterized effectively. Along with handling of nonlinearity, KLFDA also copes well with the multimodality in the RSS data. By performing KLFDA, the discriminating information contained in RSS is reorganized and maximally extracted. Prior to feature extraction, we performed outlier detection on RSS data to remove any anomalies present in the data. Experimental results show that the proposed approach obtains higher positioning accuracy by extracting maximal discriminate location features and discarding outlying information present in the RSS data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.