Using the formalism of geometrothermodynamics, we investigate the geometric
properties of the equilibrium manifold for diverse thermodynamic systems.
Starting from Legendre invariant metrics of the phase manifold, we derive
thermodynamic metrics for the equilibrium manifold whose curvature becomes
singular at those points where phase transitions of first and second order
occur. We conclude that the thermodynamic curvature of the equilibrium
manifold, as defined in geometrothermodynamics, can be used as a measure of
thermodynamic interaction in diverse systems with two and three thermodynamic
degrees of freedom
We study the thermodynamics and the thermodynamic geometries of charged rotating BTZ (CR-BTZ) black holes in (2+1)-gravity. We investigate the thermodynamics of these systems within the context of the Weinhold and Ruppeiner thermodynamic geometries and the recently developed formalism of geometrothermodynamics (GTD). Considering the behavior of the heat capacity and the Hawking temperature, we show that Weinhold and Ruppeiner geometries cannot describe completely the thermodynamics of these black holes and of their limiting case of vanishing electric charge. In contrast, the Legendre invariance imposed on the metric in GTD allows one to describe the CR-BTZ black holes and their limiting cases in a consistent and invariant manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.