Few studies have examined associations between plasma choline metabolites and risk of colorectal cancer (CRC). Therefore, we investigated associations between plasma biomarkers of choline metabolism [choline, betaine, dimethylglycine and trimethylamine N-oxide (TMAO)] and CRC risk among postmenopausal women in a case-control study nested within the Women’s Health Initiative Observational Study. We selected 835 matched case-control pairs, and cases were further stratified by tumor site (proximal, distal, or rectal) and stage (local/regional or metastatic). CRC was assessed by self-report and confirmed by medical records over the mean 5.2y of follow-up. Baseline plasma choline metabolites were measured by liquid chromatography-tandem mass spectrometry. In multivariable-adjusted conditional logistic regression models, plasma choline tended to be positively associated with rectal cancer risk [OR (95% CI)highest vs. lowest quartile=2.44 (0.93–6.40);P-trend=0.08], while plasma betaine was inversely associated with CRC overall [0.68 (0.47–0.99);P-trend=0.01] and with local/regional tumors [0.64 (0.42–0.99);P-trend=0.009]. Notably, the plasma betaine:choline ratio was inversely associated with CRC overall [0.56 (0.39–0.82);P-trend=0.004] as well as with proximal [0.66 (0.41–1.06);P-trend=0.049], rectal [0.27 (0.10–0.78);P-trend=0.02] and local/regional [0.50 (0.33–0.76);P-trend=0.001] tumors. Finally, plasma TMAO, an oxidative derivative of choline produced by intestinal bacteria, was positively associated with rectal cancer [3.38 (1.25–9.16);P-trend=0.02] and with overall CRC risk among women with lower (vs. higher) plasma vitamin B12 levels (P-interaction=0.003). Collectively, these data suggest that alterations in choline metabolism, which may arise early in disease development, may be associated with higher risk of CRC. The positive association between plasma TMAO and CRC risk is consistent with an involvement of the gut microbiome in CRC pathogenesis.
Pregnancy and lactation alter vitamin B-12 status in a manner consistent with enhanced vitamin B-12 supply to the child. Consumption of the study vitamin B-12 dose (∼3 times the RDA) increased the bioactive form of vitamin B-12, suggesting that women in these reproductive states may benefit from vitamin B-12 intakes exceeding current recommendations. This trial was registered at clinicaltrials.gov as NCT01127022.
DNA methylation is an epigenetic mechanism that regulates gene expression and can be modified by one-carbon nutrients. The objective of this study was to investigate the impact of folic acid (FA) fortification of the US food supply on leukocyte global DNA methylation and the relationship between DNA methylation, red blood cell (RBC) folate, and other one-carbon biomarkers among postmenopausal women enrolled in the Women's Health Initiative Observational Study. We selected 408 women from the highest and lowest tertiles of RBC folate distribution matching on age and timing of the baseline blood draw, which spanned the pre- (1994-1995), peri- (1996-1997), or post-fortification (1998) periods. Global DNA methylation was assessed by liquid chromatography-tandem mass spectrometry and expressed as a percentage of total cytosine. We observed an interaction (P = 0.02) between fortification period and RBC folate in relation to DNA methylation. Women with higher (vs. lower) RBC folate had higher mean DNA methylation (5.12 vs. 4.99%; P = 0.05) in the pre-fortification period, but lower (4.95 vs. 5.16%; P = 0.03) DNA methylation in the post-fortification period. We also observed significant correlations between one-carbon biomarkers and DNA methylation in the pre-fortification period, but not in the peri- or post-fortification period. The correlation between plasma homocysteine and DNA methylation was reversed from an inverse relationship during the pre-fortification period to a positive relationship during the post-fortification period. Our data suggest that (1) during FA fortification, higher RBC folate status is associated with a reduction in leukocyte global DNA methylation among postmenopausal women and; (2) the relationship between one-carbon biomarkers and global DNA methylation is dependent on folate availability.
Maternal nutrition during pregnancy influences the development and metabolism of the fetus. Recent studies suggest that the cancer risk of offspring later in life is associated with maternal diet, but little is known about the effect of a maternal diet high in methyl nutrients on breast cancer risk. Lipotropes are methyl group-containing essential nutrients (methionine, choline, folate and vitamin B 12 ) that play key roles in one-carbon metabolism. In this study, we investigated the long-term effects of maternal dietary high-dose lipotropes (five times higher than in the control diet) on the development and progression of mammary tumors in rat offspring using two separate experiments (in utero exposure with and without postnatal supplementation). In both experiments, the female offspring were injected intraperitoneally with a single dose (50 mg/kg body wt) of N-nitroso-N-methylurea during puberty to induce mammary tumors. Tumor growth and development were recorded, and at the end of the study, tissues were collected for analysis. For both experiments, the offspring from dams fed a high-dose lipotropes showed significantly decreased tumor incidence, tumor multiplicity and tumor volume, while also displaying a significant increase in survival rate and tumor latency. Gene transcription analysis, as measured by quantitative real-time PCR, revealed a significant decrease of histone deacetylase 1 (Hdac1) messenger RNA in mammary tumors in both experiments. Our findings provide evidence that maternal dietary high-dose lipotropes reduce mammary carcinogenesis in offspring in association with long-term alterations in gene expression and may be useful in developing maternal dietary strategies to prevent breast cancer.
Formate provides one-carbon units for de novo purine and thymidylate (dTMP) synthesis and is produced via both folate-dependent and folate-independent pathways. Folate-independent pathways are mediated by cytosolic alcohol dehydrogenase 5 (ADH5) and mitochondrial aldehyde dehydrogenase 2 (ALDH2), which generate formate by oxidizing formaldehyde. Formate is a potential biomarker of B-vitamin-dependent one-carbon metabolism. This study investigated the contributions of ADH5 and ALDH2 to formate production and folate-dependent de novo purine and dTMP synthesis in HepG2 cells. knockout and ALDH2 knockdown HepG2 cells were cultured in folate-deficient [0 nM (6S) 5-formyltetrahydrofolate] or folate-sufficient [25 nM (6S) 5-formyltetrahydrofolate] medium. Purine biosynthesis was quantified as the ratio of [C]-formate to [H]-hypoxanthine incorporated into genomic DNA, which indicates the contribution of the de novo purine synthesis pathway relative to salvage synthesis. dTMP synthesis was quantified as the ratio of [C]-deoxyuridine to [H]-thymidine incorporation into genomic DNA, which indicates the capacity of de novo dTMP synthesis relative to salvage synthesis. The [C]-formate-to-[H]-hypoxanthine ratio was greater in knockout than in wild-type HepG2 cells, under conditions of both folate deficiency (+30%; < 0.001) and folate sufficiency (+22%; = 0.02). These data indicate that ADH5 deficiency increases the use of exogenous formate for de novo purine biosynthesis. The [C]-deoxyuridine-to-[H]-thymidine ratio did not differ between knockout and wild-type cells, indicating that ADH5 deficiency does not affect de novo dTMP synthesis capacity relative to salvage synthesis. Under folate deficiency, ALDH2 knockdown cells exhibited a 37% lower ratio of [C]-formate to [H]-hypoxanthine ( < 0.001) compared with wild-type HepG2 cells, indicating decreased use of exogenous formate, or increased endogenous formate synthesis, for de novo purine biosynthesis. In HepG2 cells, ADH5 is a source of formate for de novo purine biosynthesis, especially during folate deficiency when folate-dependent formate production is limited. Formate is also shown to be limiting in the growth of HepG2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.