A marine energy system, which is fundamentally not paired with electric grids, should work for an extended period with high reliability. To put it in another way, by employing electrical utilities on a ship, the electrical power demand has been increasing in recent years. Besides, fuel cells in marine power generation may reduce the loss of energy and weight in long cables and provide a platform such that each piece of marine equipment is supplied with its own isolated wire connection. Hence, fuel cells can be promising power generation equipment in the marine industry. Besides, failure modes and effects analysis (FMEA) is widely accepted throughout the industry as a valuable tool for identifying, ranking, and mitigating risks. The FMEA process can help to design safe hydrogen fueling stations. In this paper, a robust FMEA has been developed to identify the potentially hazardous conditions of the marine propulsion system by considering a general type-2 fuzzy logic set. The general type-2 fuzzy system is decomposed of several interval type-2 fuzzy logic systems to reduce the inherent highly computational burden of the general type-2 fuzzy systems. Linguistic rules are directly incorporated into the fuzzy system. Finally, the results demonstrate the success and effectiveness of the proposed approach in computing the risk priority number as compared to state-of-the-art methods.
This paper presents a methodology based on the failure mode and effect analysis (FMEA) to analyze the failures in the power stage of wind-fuel cell hybrid energy systems. Besides, fault tree analysis (FTA) is applied to describe the probabilistic failures in the vital subcomponents. Finally, the reliability assessment of the system is carried out for a five-year operation that is guaranteed by the manufacturer. So, as the result, the reliability analysis proves that the metal oxide semiconductor field effect transistor (MOSFET) and electrolytic capacitor are the most critical components that introduce damages in the power circuit. Moreover, a comparative study on the reliability assessment by the exponential distribution and the Weibull distribution show that the B1 lifetime obtained by the Weibull distribution is closer to reality.
This paper uses a system engineering approach based on the Failure Mode and Effect Analysis (FMEA) methodology to do risk analysis of the power conditioner of a Proton Exchange Membrane Fuel Cell (PEMFC). Critical components with high risk, common cause failures and effects are identified for the power conditioner system as one of the crucial parts of the PEMFCs used for backup power applications in the telecommunication industry. The results of this paper indicate that the highest risk corresponds to three failure modes including high leakage current due to the substrate interface of the metal oxide semiconductor field effect transistor (MOSFET), current and electrolytic evaporation of capacitor, and thereby short circuit, loss of gate control, and increased leakage current due to gate oxide of the MOSFET. The MOSFETs, capacitors, chokes, and transformers are critical components of the power stage, which should be carefully considered in the development of the design production and implementation stage. Finally, Bayesian networks (BNs) are used to identify the most critical failure causes in the MOSFET and capacitor as they are classified from the FMEA as key items based on their Risk Priority Numbers (RPNs). As a result of BNs analyses, high temperature and overvoltage are distinguished as the most crucial failure causes. Consequently, it is recommended for designers to pay more attention to the design of MOSFETs’ failure due to high leakage current owing to substrate interface, which is caused by high temperature. The results are emphasizing design improvement in the material in order to be more resistant from high temperature.
Experiments using the Design of Experiment (DoE) methodology were carried out to investigate the effects of pitch distance (P), temperature (T), voltage (V), and contamination (C) on the leak current measured on surface insulation resistance (SIR) test boards. A 2 4 full factorial design with eight replications was performed, and the response was measured continuously over a 20 hour period for each experiment. Current measured over time exhibited a clear pattern of an initial low and stable current, followed by a transition to a much higher current. Microscopic analysis of the boards indicates that the transition is due to dendrite formation due to electrochemical migration (ECM). The time at the start of this transition phase was identified as the time to failure (TTF) for each experiment. Leakage current (LC) was also calculated as the mean current prior to failure. Analysis of Variance methods were used to model both TTF and LC. Both TTF and LC were found to be significantly affected by P, T, and C. However, the effect of V was found to be significant only for TTF. The general current behavior over the prolonged experimental period and the resulting statistical models give new insight into the failure process related to ECM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.