Rock masses have inherently different resistance to fragmentation by blasting. This property is hereafter referred to as the blastability of a rock mass. Empirical models for the estimation of blastability have been developed. In this study, the Mamdani fuzzy algorithm was used to express the blastability index by fuzzy sets. We use Lilly and Ghose blastability models which are important models of blastability. Parameters of these models were represented by fuzzy sets as the input variables of the fuzzy model. The output of the fuzzy model is a final blastability index rating. Experimental data is obtained from seven mine and one dam sites in Iran. BI values are obtained from both BI fuzzy inference system and conventional BI; Fuzzy sets have more adjustment than conventional model.
In this research, dissolution of chalcopyrite concentrate is modelled and optimized using Response Surface Methodology (RSM). Also, effective parameters in the leaching process such as the amount of pyrite, silver ions, redox potential and initial concentration of acid are comprehensively studied. Central Composite Design (CCD) methodology is chosen as the design matrix to predict the optimum level of the parameters. In the next step, it will be proven that in the presence of silver ions, pyrite effectiveness is improved and also the chalcopyrite dissolution rate is increased considerably. Using the result of quadratic programming, a rotation speed of 1000 rpm, a pyrite/chalcopyrite mass ratio of 3:1, the amount of 150 ppm silver ion, a solution potential set point of 470 mV, at 800°C and 25 g/L initial acid concentration are the optimal level of the selected parameters wherein the maximum copper extraction with more than 95% in less than 10 hours can be accessible.
The purpose of this study is to determine the appropriate method for micaceous iron ore processing and production per-industrial application standards. After identifying the characteristics of the samples (with XRF, XRD, mineralogical analyzes), gravity and magnetic separation tests were carried out. Quartz and hematite are the main minerals of micaceous hematite ores. Silica grade as the major impurity varies from 10% to 68%. The total iron content of the samples also varies from 15% to 62%. A jig and shaking table did not provide a good result in micaceous hematite beneficiation to achieve the standard of its specific applications. Gravity concentration by the spiral in the size range of -200 and -300 μm has led to the production of iron concentrates with a grade of 62.34% and 64.84%, respectively. The recovery values for the two experiments are 13.50% and 12.60%, respectively. Therefore, the spiral did not provide a good result in the micaceous iron ore beneficiation. High-intensity magnetic separation (1.2 T) has resulted in a product with a grade and recovery of 65.98% and 88.35%, respectively. The experimental design utilizing the Taguchi method considering the increasing of grade or recovery priority indicated that for micaceous iron beneficiation with a priority of recovery increasing, the feeder frequency, roll speed, and adjustable gate angle should be at 6.5 Hz, 95 rpm, and 20°, respectively. However, for micaceous iron beneficiation with a priority of grade increasing, the feeder frequency, roll speed, and adjustable gate angle should be at 2.5 Hz, 135 rpm, and 60°, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.