The age-specific functional and numerical responses of Neoseiulus cucumeris Oudemans (Mesostigmata: Phytoseiidae) on eggs of the two-spotted spider mite, Tetranychus urticae Koch (Prostigmata: Tetranychidae), were assessed in the laboratory using bean leaf discs. Densities of 2, 4, 8, 16, 32, 64, and 128 prey were provided to 4- (protonymph), 6- (deutonymph), 8-, 13-, 18-, 23-, 28-, 33-, and 40-d-old N. cucumeris individuals. The functional response of 28- and 40-d-old N. cucumeris fitted type II, whereas the other ages displayed a type III functional response. The longest handling time observed at the age of 4 d was 0.515 h, whereas the shortest handling time and highest value of maximum attack rate (T/Th) were associated with the age of the 28-d-old treatment (0.261 h and 91.95 prey/d, respectively). The numerical response of N. cucumeris showed a significant increase with increasing prey density, but its rate gradually decreased at higher densities. Therefore, the efficiency of conversion of ingested food was relatively higher at low two-spotted spider mite densities, whereas it was reduced at high two-spotted spider mite densities. The stronger functional response and predation capacity of N. cucumeris on two-spotted spider mite eggs indicated the high potential of this predatory mite as an effective biological control agent against two-spotted spider mite especially at its early and middle ages and also when higher prey densities are present.
BACKGROUND: This study evaluated the potential of Neoseiulus cucumeris Oudemans and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) for controlling western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), by determining the functional response, numerical response, prey switching and mutual interference behaviors of the predators.RESULTS: A type II functional response was detected for two predator species fed on WFT first instars. The attack rate was higher for A. swirskii than N. cucumeris, but the handling time of N. cucumeris was shorter. For two predator species, numerical response was affected by both prey density and oviposition time. The per capita searching efficiencies of the two predators decreased significantly with increasing predator densities. The interference coefficient for A. swirskii was less than that of N. cucumeris. Although N. cucumeris switched from feeding on WFT first instars to feeding on second instars, this behavior was not observed in A. swirskii.CONCLUSIONS: Comparison of the two predator species foraging behaviors indicated optimal performance by A. swirskii at lower F. occidentalis densities. N. cucumeris was found to perform optimally at relatively higher prey densities. Moreover, N. cucumeris could be more effective in stabilizing the predator-prey system by switching behavior compared with A. swirskii. At higher predator densities, A. swirskii seemed to be an effective agent owing to its reduced intraspecific competition compared with N. cucumeris. Findings from this study will be useful in selecting appropriate agents and developing effective biocontrol programs to control WFT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.