A new static lighting concentrator with optical coupler
This dataset includes multiple files related to optimization of electric vehicles to minimize overloading in low voltage grids by varying the locations available to charge the EVs. The data include lognormally sampled hourly sorted scenarios across 11 charging locations for a stochastics-based Monte Carlo simulation. This simulation runs through 2 million scenarios based on actual probabilities to incorporate most possible situations. It also includes samples from normally distributed household electricity use scenarios based on agent-based modeling. The article includes the test grid parameters for simulation, which were used to create a benchmark grid in DigSilent Powerfactory software, as well as intermediate outputs defining worst case scenarios when electric vehicles were charged and results from three different optimization approaches involving a reduction in voltage drops, cable overloading and total line losses. The outputs from the benchmark grid were used to train a machine learning algorithm, the weights and codes for which are also attached. This trained network acted as the grid for subsequent iterative optimization procedures. Outputs are presented as a comparison between pre-optimization and post-optimization scenarios. The above dataset and procedure were repeated while varying the number of EVs between 0 and 100 in increments of 20, data for which are also attached. The data article supports a related submission titled “Minimization of Overloading Caused by Electric Vehicle (EV) Charging in Low Voltage Networks”.
It is important to understand the effect of increasing electric vehicles (EV) penetrations on the existing electricity transmission infrastructure and to find ways to mitigate it. While, the easiest solution is to opt for equipment upgrades, the potential for reducing overloading, in terms of voltage drops, and line loading by way of optimization of the locations at which EVs can charge, is significant. To investigate this, a heuristic optimization approach is proposed to optimize EV charging locations within one feeder, while minimizing nodal voltage drops, cable loading and overall cable losses. The optimization approach is compared to typical unoptimized results of a monte-carlo analysis. The results show a reduction in peak line loading in a typical benchmark 0.4 kV by up to 10%. Further results show an increase in voltage available at different nodes by up to 7 V in the worst case and 1.5 V on average. Optimization for a reduction in transmission losses shows insignificant savings for subsequent simulation. These optimization methods may allow for the introduction of spatial pricing across multiple nodes within a low voltage network, to allow for an electricity price for EVs independent of temporal pricing models already in place, to reflect the individual impact of EVs charging at different nodes across the network.
Across the world, the impact of increasing electric vehicle (EV) adoption requires a better understanding. The authors hypothesize that the introduction of EV’s will cause significant overloading within low voltage distribution grids. To study this, several low voltage networks were reconstructed based on the literature and modelled using DigSilent Powerfactory, taking into account the stochastic variability of household electricity consumption, EV usage, and solar irradiance. The study incorporates two distinct usage scenarios—residential loads with varying EV penetrations without and with distributed grid tied generation of electricity. The Monte-Carlo simulation took into account population demographics and showed that in urban networks, EV introduction could lead to higher cable loading percentages than allowed, and in rural networks, this could lead to voltage drops beyond the allowed limits. Distributed generation (DG) in the form of solar power could significantly offset both these overloading characteristics, as well as the active and reactive power demands of the network, by between 10–50%, depending on the topology of the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.