Analytical models are widely utilised in the study and performance prediction of electric machines by providing fast, yet accurate solutions. By combining conventional magnetic equivalent circuit techniques with Faraday's and Ampere's laws, an analytical model for double-sided permanent-magnet radial-flux eddy-current couplers is presented that can easily handle complex geometries. The proposed approach is also capable of taking the three-dimensional (3D) impacts into account. The characteristics and design considerations are also studied for a surface-mounted permanent-magnet structure. Moreover, the 2D and 3D finite-element methods are employed to verify the results, as well as transient study of the device under two different scenarios. Finally, sensitivity analysis is carried out to investigate the influence of the design variables on the characteristics of the coupler, which provides valuable information in the current and future studies of such devices.
Analytical models have been demonstrated to be effective tools in the analysis of electromagnetic devices by providing fast, yet accurate solutions. In this paper, a comprehensive analytical framework for double-rotor radial-flux air-cored permanent-magnet (PM) machines is developed whereby the average as well as the torque ripples, back-electromotive force waveforms, air-gap flux density distribution, and a number of other characteristics regarding the design of the machine are predicted. Also, closed-form expressions for inductances of the stator coils are analytically derived. All machine parameters and material properties including iron saturation are considered in the model. Moreover, an algorithm in order to optimally design the thicknesses of the rotor yokes based on the utilized steel is presented. Finally, genetic optimizations regarding the enhancement of the produced torque and back-EMF are performed. It is also shown that the results obtained from the proposed model match well with those issued from FEM.Index Terms-finite element method, genetic optimization, inductance calculation, magnetic equivalent circuit, nonlinear modeling, permanent-magnet machine, double-rotor radial-flux machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.