The human visual system is developed by viewing natural scenes. In controlled experiments, natural stimuli therefore provide a realistic framework with which to study the underlying information processing steps involved in human vision. Studying the properties of natural images and their effects on the visual processing can help us to understand underlying mechanisms of visual system. In this study, we used a rapid animal vs. non-animal categorization task to assess the relationship between the reaction times of human subjects and the statistical properties of images. We demonstrated that statistical measures, such as the beta and gamma parameters of a Weibull, fitted to the edge histogram of an image, and the image entropy, are effective predictors of subject reaction times. Using these three parameters, we proposed a computational model capable of predicting the reaction times of human subjects.
Most decisions require information gathering from a stimulus presented with different gaps.Indeed, the brain process of this integration is rarely ambiguous. Recently, it has been claimed that humans can optimally integrate the information of two discrete pulses independent of the temporal gap between them. Interestingly, subjects' performance on such a task, with two discrete pulses, is superior to what a perfect accumulator can predict. Although numerous neuronal and descriptive models have been proposed to explain the mechanism of perceptual decision-making, none can explain human behavior on this two-pulse task. In order to investigate the mechanism of decision-making on the noted tasks, a set of modified driftdiffusion models based on different hypotheses were used. Model comparisons clarified that, in a sequence of information arriving at different times, the accumulated information of earlier evidence affects the process of information accumulation of later evidence. It was shown that the rate of information extraction depends on whether the pulse is the first or the second one.The proposed model can also explain the stronger effect of the second pulse as shown by Kiani et al. (2013).
Bias in perceptual decisions can be generally defined as an effect which is controlled by factors other than the decision-relevant information (e.g., perceptual information in a perceptual task, when trials are independent). The literature on decision-making suggests two main hypotheses to account for this kind of bias: internal bias signals are derived from (a) the residual of motor signals generated to report a decision in the past, and (b) the residual of sensory information extracted from the stimulus in the past. Beside these hypotheses, this study suggests that making a decision in the past per se may bias the next decision. We demonstrate the validity of this assumption, first, by performing behavioral experiments based on the two-alternative forced-choice (TAFC) discrimination of motion direction paradigms and, then, we modified the pure drift-diffusion model (DDM) based on the accumulation-to-bound mechanism to account for the sequential effect. In both cases, the trace of the previous trial influences the current decision. Results indicate that the probability of being correct in the current decision increases if it is in line with the previously made decision even in the presence of feedback. Moreover, a modified model that keeps the previous decision information in the starting point of evidence accumulation provides a better fit to the behavioral data. Our findings suggest that the accumulated evidence in the decision-making process after crossing the bound in the previous decision can affect the parameters of information accumulation for the current decision in consecutive trials.
Principles of efficient coding suggest that the peripheral units of any sensory processing system are designed for efficient coding. The function of the lateral geniculate nucleus (LGN) as an early stage in the visual system is not well understood. Some findings indicate that similar to the retina that decorrelates input signals spatially, the LGN tends to perform a temporal decorrelation. There is evidence suggesting that corticogeniculate connections may account for this decorrelation in the LGN. In this study, we propose a computational model based on biological evidence reported by Wang et al. (2006), who demonstrated that the influence pattern of V1 feedback is phase-reversed. The output of our model shows how corticogeniculate connections decorrelate LGN responses and make an efficient representation. We evaluated our model using criteria that have previously been tested on LGN neurons through cell recording experiments, including sparseness, entropy, power spectra, and information transfer. We also considered the role of the LGN in higher-order visual object processing, comparing the categorization performance of human subjects with a cortical object recognition model in the presence and absence of our LGN input-stage model. Our results show that the new model that considers the role of the LGN, more closely follows the categorization performance of human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.