The molecular characterization of patient tumors provides a rational and highly promising approach for guiding oncologists in treatment decision-making. Notwithstanding, genomic medicine still remains in its infancy, with innovators and early adopters continuing to carry a significant portion of the clinical and financial risk. Numerous innovative precision oncology trials have emerged globally to address the associated need for evidence of clinical utility. These studies seek to capitalize on the power of predictive biomarkers and/or treatment decision support analytics, to expeditiously and cost-effectively demonstrate the positive impact of these technologies on drug resistance/response, patient survival, and/or quality of life. Here, we discuss the molecular foundations of these approaches and highlight the diversity of innovative trial strategies that are capitalizing on this emergent knowledge. We conclude that, as increasing volumes of clinico-molecular outcomes data become available, in future, we will begin to transition away from expert systems for treatment decision support (TDS), towards the power of AI-assisted TDS—an evolution that may truly revolutionize the nature and success of cancer patient care.
BRCA1/2 variants are prognostic biomarkers for hereditary breast and/or ovarian cancer (HBOC) syndrome and predictive biomarkers for PARP inhibition. In this study, we benchmarked the classification of BRCA1/2 variants from patients with HBOC-related cancer using MH BRCA, a novel computational technology that combines the ACMG guidelines with expert-curated variant annotations. Evaluation of BRCA1/2 variants (n = 1040) taken from four HBOC studies showed strong concordance within the pathogenic (98.1%) subset. Comparison of MH BRCA’s ACMG classification to ClinVar submitter content from ENIGMA, the international consortium of investigators on the clinical significance of BRCA1/2 variants, the ARUP laboratories, a clinical testing lab of the University of UTAH, and the German Cancer Consortium showed 99.98% concordance (4975 out of 4976 variants) in the pathogenic subset. In our patient cohort, refinement of patients with variants of unknown significance reduced the uncertainty of cancer-predisposing syndromes by 64.7% and identified three cases with potential family risk to HBOC due to a likely pathogenic variant BRCA1 p.V1653L (NM_007294.3:c.4957G > T; rs80357261). To assess whether classification results predict PARP inhibitor efficacy, contextualization with functional impact information on DNA repair activity were performed, using MH Guide. We found a strong correlation between treatment efficacy association and MH BRCA classifications. Importantly, low efficacy to PARP inhibition was predicted in 3.95% of pathogenic variants from four examined HBOC studies and our patient cohort, indicating the clinical relevance of the consolidated variant interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.