The present study is aimed at comparing the planning and delivery efficiency between three-dimensional conformal radiotherapy (3D-CRT), field-in-field, forward planned, intensity modulated radiotherapy (FIF-FP-IMRT), and inverse planned intensity modulated radiotherapy (IP-IMRT). Treatment plans of 20 patients with left-sided breast cancer, 10 post-mastectomy treated to a prescribed dose of 45 Gy to the chest wall in 20 fractions, and 10 post-breast-conserving surgery to a prescribed dose of 50 Gy to the whole breast in 25 fractions, with 3D-CRT were selected. The FiF-FP-IMRT plans were created by combining two open fields with three to four segments in two tangential beam directions. Eight different beam directions were chosen to create IP-IMRT plans and were inversely optimized. The homogeneity of dose to planning target volume (PTV) and the dose delivered to heart and contralateral breast were compared among the techniques in all the 20 patients. All the three radiotherapy techniques achieved comparable radiation dose delivery to PTV-95% of the prescribed dose covering > 95% of the breast PTV. The mean volume of PTV receiving 105% (V105) of the prescribed dose was 1.7% (range 0-6.8%) for IP-IMRT, 1.9% for FP-IMRT, and 3.7% for 3D-CRT. The homogeneity and conformity indices (HI and CI) were similar for 3D-CRT and FP-IMRT, whereas the IP-IMRT plans had better conformity index at the cost of less homogeneity. The 3D-CRT and FiF-FP-IMRT plans achieved similar sparing of critical organs. The low-dose volumes (V5Gy) in the heart and lungs were larger in IP-IMRT than in the other techniques. The value of the mean dose to the ipsilateral lung was higher for IP-IMRT than the values for with FiF-FP-IMRT and 3D-CRT. In the current study, the relative volume of contralateral breast receiving low doses (0.01, 0.6, 1, and 2Gy) was significantly lower for the FiF-FP-IMRT and 3D-CRT plans than for the IP-IMRT plan. Compared with 3D-CRT and IP-IMRT, FiF-FP-IMRT proved to be a simple and efficient planning technique for breast irradiation. It provided dosimetric advantages, significantly reducing the size of the hot spot and minimally improving the coverage of the target volume. In addition, it was felt that FiF-FP-IMRT required less planning time and easy field placements.
Aim:Several plan quality metrics are available for the evaluation of stereotactic radiosurgery/radiotherapy plans. This is a retrospective analysis of 60 clinical treatment plans of arteriovenous malformation (AVM) patients to study clinical usefulness of selected plan quality metrics.Materials and Methods:The treatment coverage parameters Radiation Therapy Oncology Group (RTOG) Conformity Index (CIRTOG), RTOG Quality of Coverage (QRTOG), RTOG Homogeneity Index (HIRTOG), Lomax Conformity Index (CILomax), Paddick's Conformity Index (CIPaddick), and dose gradient parameters Paddick's Gradient Index (GIPaddick) and Equivalent Fall-off Distance (EFOD) were calculated for the cohort of patients. Before analyzing patient plans, the influence of calculation grid size on selected plan quality metrics was studied on spherical targets.Results:It was found that the plan quality metrics are independent of calculation grid size ≤2 mm. EFOD was found to increase linearly with increase in target volume, and a linear fit equation was obtained.Conclusions:The analysis shows that RTOG indices and EFOD would suffice for routine clinical radiosurgical treatment plan evaluation if a dose distribution is available for visual inspection.
More often the embolic materials in the brain create artefacts in the planning CT images that could lead to a dose variation in planned and delivered dose. The aim of the study was to evaluate the dosimetric effect of artefacts generated by the Onyx™ embolization material during Stereotactic Radiosurgery/Radiotherapy (SRS/SRT) planning. An in-house made novel Polymethyl Methacrylate (PMMA) head phantom (specially designed for SRS/SRT plans) was used for this purpose. For the evaluation process, we have created concentric ring structures around the central Onyx materials on both the CT sets (with and without Onyx material). The verification plans were generated using different algorithms namely Analytical Anisotropic Algorithm (AAA), Acuros XB and Monaco based Monte Carlo on both CT sets. Mean integral dose over the region of interest were calculated in both CT sets. The dosimetric results shows, due to the presence of Onyx material, relative variation in mean integral dose to the proximal structure (Ring 1) were −4.02%, −2.98%, and −2.49% for Monte Carlo, Acuros XB, and AAA respectively. Observed variations are attributed to the presence of artefacts due to Onyx material. Artefacts influence the accuracy of dose calculation during the planning. All the calculation algorithms are not equally capable to account such variations. Special cares are to be taken while choosing the calculation algorithms as it impacts the results of treatment outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.