Molecular signaling is ubiquitous across scales in nature and finds useful applications in precision medicine and heavy industry. Characterizing noise in communication systems is essential to understanding its information capacity. To date, research in molecular nano communication (MNC) primarily considers the molecular dynamics within the medium, where various forms of stochastic effects generate noise. However, in many real-world scenarios, external effects can also influence molecular dynamics and cause noise. Here, the noise due to the temperature fluctuations from incident electromagnetic (EM) radiation is considered, with applications ranging from cell signaling to chemical engineering. EM radiation and subsequent molecular absorption cause temperature fluctuations which affect molecular dynamics and can be considered as an exogenous noise source for MNC. In this paper, the probability density function of the radiation absorption noise (RAN) is analyzed and to demonstrate applicability, we include characteristics of different tissues of the human body. Furthermore, the closed-form expression of error probability (EP) for MNC under the radiation noise is derived. Numerical analysis is demonstrated on different tissues of the human body: skin, brain, and blood, as well as the polarization factor of incident EM radiation is demonstrated. The coupling relationship between the radiation frequency and the intrinsic impedance of the human body on the PDF of radiation absorption noise is presented. This is useful for understanding how mutual information changes with external radiation sources. INDEX TERMS Molecular communication, noise modeling, and channel modeling.
Smart drug delivery systems, automation of biological and chemical attacks are the most extensive applications of Diffusive Molecular Communication (DMC). Further, security in DMC is a crucial issue due to presence of eavesdroppers in the network. Recently, Physical-layer Security (PhySec) is regarded as the most suitable security technique as it is easy to implement. On the other hand, Biological Spherical Environment (BSE) is most appropriate for the modelling of spherical tissues such as stomach, lung, kidney and cells. However, none of the literatures have secrecy capacity of DMC under BSE. Therefore, this paper presents expression for Cs of DMC under BSE. In addition, Cs is analyzed as function of Eve's distance and Eve's radius keeping power and/or bandwidth as parameter. Proposed model is useful in analysis of DMC within the spherical tissues. Simulated results show perfect agreement with the theoretical background.
A study has been conducted to assess the ambient air quality status of Dewas industrial area of Madhya Pradesh, India. Total nine locations were selected in Dewas industrial area for ambient air quality monitoring. The eleven pollutants mainly particulate matter less than 10 µ size (PM10), particulate matter less than 2.5 µ size (PM2.5), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), ammonia (NH3), benzene (C6H6), benzo (a) Pyrene (BaP) – particulate phase, lead (Pb), Arsenic (As) and Nickel (Ni) were monitored during different four quarters from April 2019 to March 2020. The study revealed that average concentration of gaseous pollutants viz, NO2, SO2, O3, NH3, C6H6 in ambient air were well within standard limits at all selected locations, however concentration of particulate matter (PM10, PM2.5) and heavy metals (Pb & Ni) except As level were found exceeding the National Ambient Air Quality Standards (NAAQS) 2009, India at few monitoring locations. Benzo (a) Pyrene (BaP) –particulate phase in ambient air was not detected during this study. Ambient air Quality Index was found to be moderate (115.56-198.36) at six locations and satisfactory (17.60-94.94) at three locations in Dewas industrial area. Overall ambient Air Quality Index of Dewas industrial area was observed, satisfactory to moderate during this study w.r.t. Air Quality Index. KEY WORDS: Industrial Area, Ambient Air, Air Pollutants, Air Quality Index
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.