ABSTRACT. The best combination of primers and the annealing temperature of multiplex PCR for Campylobacter jejuni, Campylobacter coli, and Campylobacter lari were examined. The multiplex PCR was able to detect type strains of the three species. All results of identification of wild strains (30 strains of C. jejuni, 20 strains of C. coli, and 4 strains of C. lari) by the multiplex PCR coincided with those of the conventional biochemical identification tests, suggesting that the multiplex PCR can simultaneously differentiate C. jejuni, C. coli, and C. lari from wild strains of campylobacters easily and rapidly. Campylobacters were detected from sparrow feces by the multiplex PCR and antimicrobial sensitivities of the strains were determined to discuss the role of sparrows in contamination of broilers with C. jejuni. Three out of 13 strains of C. jejuni isolated from sparrow feces showed quinolone resistance. From the frequent use of quinolones for treatment of industrial animals like chickens, pigs, and cows, the three strains of quinolone-resistant C. jejuni in sparrows must have been originated from those industrial animals. Sparrows that have quinolone-resistant C. jejuni were considered to have contacted with industrial animals or thier feed. It may be presumed, on the contrary, that C. jejuni in sparrows could be a potential source of contamination of broilers.
BST-2/CD317/tetherin is a host transmembrane protein that potently inhibits human immunodeficiency virus type 1 (HIV-1) virion release by tethering the nascent virions to the plasma membrane. Viral protein U (Vpu) is an accessory protein encoded by HIV-1 as well as by some simian immunodeficiency viruses (SIVs) infecting wild chimpanzees, gorillas, or monkeys (SIVcpz, SIVgor, or SIVgsn/SIVmon/SIVmus, respectively). HIV-1 Vpu directly binds to and downregulates human BST-2. The antagonism is highly species specific because the amino acid sequences of BST-2 are different among animal species. Here, we show that Vpu proteins from several SIVcpz, SIVgsn, SIVmon, or SIVmus isolates fail to antagonize human BST-2. Only Vpu from an SIVgsn isolate (SIVgsn-99CM71 [SIVgsn71]) was able to antagonize human BST-2 as well as BST-2 of its natural host, greater spot-nosed monkey (GSN). This SIVgsn Vpu interacted with human BST-2, downregulated cell surface human BST-2 expression, and facilitated HIV-1 virion release in the presence of human BST-2. While the unique 14AxxxxxxxW22 motif in the transmembrane domain of HIV-1NL4-3Vpu was reported to be important for antagonizing human BST-2, we show here that two AxxxxxxxW motifs (A22W30 and A25W33) exist in SIVgsn71 Vpu. Only the A22W30 motif was needed for SIVgsn71 Vpu to antagonize GSN BST-2, suggesting that the mechanism of this antagonism resembles that of HIV-1NL4-3 Vpu against human BST-2. Interestingly, SIVgsn71 Vpu requires two AxxxxxxxW (A22W30 and A25W33) motifs to antagonize human BST-2, suggesting an as-yet-undefined way that SIVgsn71 Vpu works against human BST-2. These results imply an evolutionary impact of primate BST-2 on lentiviral Vpu. IMPORTANCE Genetic alterations conferring a selective advantage in protecting from life-threating pathogens are maintained during evolution. In fact, the amino acid sequences of BST-2 differ among primate animals and their susceptibility to viral proteins is species specific, suggesting that such genetic diversity has arisen through the evolutionarily controlled balance between the host and pathogens. The M (main) group of HIV-1 is thought to be derived from SIVcpz, which utilizes Nef, but not Vpu, to antagonize chimpanzee BST-2. SIVcpz Nef is, however, unable to antagonize human BST-2, and Vpu was consequently chosen again as an antagonist against human BST-2 in the context of HIV-1. Studies on how Vpu lost and acquired this ability, together with the distinct mechanisms by which SIVgsn71 Vpu binds to and downregulates human or GSN BST-2, may help to explain the evolution of this lentiviral protein as a result of host-pathogen interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.