Anion redox reactions offer a means of enhancing the capacity of layered sodium transition metal oxide positive electrode materials. However, oxygen redox reactions typically show limited reversibility and irreversible structural...
The valence band (VB) structures of wurtzite AlCrN (Cr concentration: 0-17.1%), which show optical absorption in the ultraviolet-visible-infrared light region, were investigated via photoelectron yield spectroscopy (PYS), x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio density of states (DOS) calculations. An obvious photoelectron emission threshold was observed ~5.3 eV from the vacuum level for AlCrN, whereas no emission was observed for AlN in the PYS spectra. Comparisons of XPS and UPS VB spectra and the calculated DOS imply that Cr 3d states are formed both at the top of the VB and in the AlN gap. These data suggest that Cr doping could be a viable option to produce new materials with relevant energy band structures for solar photoelectric conversion.
Sodium layered oxides showing oxygen redox activity are promising positive electrodes for sodium-ion batteries (SIBs). However, structural degradation typically results in limited reversibility of the oxygen redox activity. Herein, the effect of Zn-doping on the electrochemical properties of P3-type sodium manganese oxide, synthesised under air and oxygen is investigated for the first time. Air-Na 0.67 Mn 0.9 Zn 0.1 O 2 and Oxy-Na 0.67 Mn 0.9 Zn 0.1 O 2 exhibit stable cycling performance between 1.8 and 3.8 V, each maintaining 96 % of their initial capacity after 30 cycles, where Mn 3 + /Mn 4 + redox dominates. Increasing the voltage range to 1.8-4.3 V activates oxygen redox. For the material synthesised under air, oxygen redox activity is based on Zn, with limited reversibility. The additional transition metal vacancies in the material synthesised under oxygen result in enhanced oxygen redox reversibility with small voltage hysteresis. These results may assist the development of high-capacity and structurally stable oxygen redox-based materials for SIBs.
For highly efficient photoconversion devices, 3d-transition-metal-doped AlN is a candidate intermediate-band material. Here, we synthesized and investigated V-doped AlN (AlVN; V ≤ 11%) films. The optical absorption spectra of the films showed characteristic features including a peak in the infrared region and shoulders in the visible light region. These features remained essentially unchanged for the various V concentrations. X-ray diffraction (XRD), transmission electron microscopy (TEM), and V K-edge X-ray absorption fine structure (XAFS) measurements were carried out to clarify the crystallographic origin of the optical absorption features. The XRD profiles revealed that all films had a c-axis-oriented wurtzite structure. The TEM analyses supported the XRD results. The V K-edge X-ray absorption near-edge structure indicated that the V atoms in the AlN lattice were surrounded by N atoms with non-centrosymmetric conditions and had an oxidation state close to 3+. Extended XAFS (EXAFS) analyses implied that the V atoms had C3v symmetry. The results of ab initio lattice relaxation calculations for a model wurtzite structure of an Al35V1N36 supercell were consistent with the EXAFS data. Electronic structure calculations using this model showed that additional energy bands, mainly consisting of V d states, were formed in the band gap of AlN, and the Fermi level was between the additional bands. Hence, in the optical absorption spectra, the peak was explained by d-d transitions partially allowed thorough hybridization with the p component, and the shoulders were attributed to transitions from the valence band to the new bands in the band gap of AlN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.