Background Pulmonary pleomorphic carcinoma (PPC) is a rare type of non-small cell lung cancer characterized by high malignancy and a poor prognosis. PPC is associated with a high frequency of postoperative relapse, and shows resistance to chemotherapy. The high malignancy of cancers is associated with genomic instability, which is related to mutations of tumor suppressor genes, such as tumor protein p53 (TP53) and ataxia-telangiectasia mutated (ATM). In addition, signaling pathways involving the oncogenes such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and epidermal growth factor receptor (EGFR) are associated with resistance to chemotherapy. However, the association of PPC with these gene mutations remains unknown. We investigated the impact of TP53, ATM, PIK3CA, and EGFR mutations on the postoperative prognosis of PPC. Methods Fifty-five patients with PPC who underwent complete resection were studied. A gene mutation analysis was performed using next-generation sequencing. Postoperative overall survival of patients with gene mutations was evaluated using a multivariate Cox proportional hazards model in which the explanatory variables were the presence of each gene mutation, and the confounding factors were pathological stage and age. The robustness of the results was evaluated by a sensitivity analysis. Results The frequencies of pathogenic mutations in TP53, ATM, PIK3CA, and EGFR were 47%, 0%, 7%, and 9%, respectively. A multivariate analysis adjusted for pathological stage and age showed a significant difference for only PIK3CA mutations. The hazard ratio (HR) for overall survival in cases with pathogenic mutations of PIK3CA for wild type or non-pathogenic mutations was 4.5 (95% confidence interval [CI] 1.1–18.8). Likewise, sensitivity analyses adjusted for pathological stage and sex (HR, 7.5; 95% CI 1.7–32.4) and for age and sex (HR, 5.4; 95% CI 1.4–21.7) resulted in similar findings. Although three patients with pathogenic mutations of PIK3CA that recurred postoperatively were treated by chemotherapy or immunotherapy, they survived for less than two years. Conclusions The postoperative prognosis of PPC with PIK3CA pathogenic mutations is particularly poor. Pathogenic mutations of PIK3CA may be a postoperative prognostic marker. Inhibition of signaling pathways associated with PIK3CA mutations may also be a target for chemotherapy after relapse of PPC.
Background Pulmonary pleomorphic carcinoma (PPC) is a rare type of non-small cell lung cancer characterized by high malignancy and a poor prognosis. PPC is associated with a high frequency of postoperative relapse, and shows resistance to chemotherapy. The high malignancy of cancers is associated with genomic instability, which is related to mutations of tumor suppressor genes, such as tumor protein p53 (TP53) and ataxia-telangiectasia mutated (ATM). In addition, signaling pathways involving the oncogenes such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and epidermal growth factor receptor (EGFR) are associated with resistance to chemotherapy. However, the association of PPC with these gene mutations remains unknown. We investigated the impact of TP53, ATM, PIK3CA, and EGFR mutations on the postoperative prognosis of PPC. Methods Fifty-five patients with PPC who underwent complete resection were studied. A gene mutation analysis was performed using next-generation sequencing. Postoperative overall survival of patients with gene mutations was evaluated using a multivariable Cox proportional hazards model in which the explanatory variables were the presence of each gene mutation, and the confounding factors were pathological stage and age. The robustness of the results was evaluated by a sensitivity analysis. Results The frequencies of pathogenic mutations in TP53, ATM, PIK3CA, and EGFR were 47, 0, 7, and 9%, respectively. A multivariable analysis adjusted for pathological stage and age showed a significant difference for only PIK3CA mutations. The hazard ratio (HR) for overall survival in cases with pathogenic mutations of PIK3CA for wild type or non-pathogenic mutations was 4.5 (95% confidence interval [CI] 1.1–18.8). Likewise, sensitivity analyses adjusted for pathological stage and sex (HR, 7.5; 95% CI 1.7–32.4) and for age and sex (HR, 5.4; 95% CI 1.4–21.7) resulted in similar findings. Although three patients with pathogenic mutations of PIK3CA that recurred postoperatively were treated by chemotherapy or immunotherapy, they survived for less than 2 years. Conclusions The postoperative prognosis of PPC with PIK3CA pathogenic mutations is particularly poor. Pathogenic mutations of PIK3CA may be a postoperative prognostic marker. Inhibition of signaling pathways associated with PIK3CA mutations may also be a target for chemotherapy after relapse of PPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.