The Ca 21 -activated Cl 2 channel transmembrane proteins with unknown function 16 A (TMEM16A; also known as anoctamin 1 or discovered on gastrointestinal stromal tumor 1) plays an important role in facilitating the cell growth and metastasis of TMEM16A-expressing cancer cells. Histone deacetylase (HDAC) inhibitors (HDACi) are useful agents for cancer therapy, but it remains unclear whether ion channels are epigenetically regulated by them. Using real-time polymerase chain reaction, Western blot analysis, and whole-cell patch-clamp assays, we found a significant decrease in TMEM16A expression and its functional activity was induced by the vorinostat, a pan-HDACi in TMEM16A-expressing human cancer cell lines, the prostatic cancer cell line PC-3, and the breast cancer cell line YMB-1. TMEM16A downregulation was not induced by the chemotherapy drug paclitaxel in either cell
The intermediate‐conductance Ca2+‐activated K+ channel KC
a3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail. The results of this study showed a significant decrease in KC
a3.1 transcription by HDAC inhibition in the human breast cancer cell line YMB‐1, which functionally expresses KCa3.1. A treatment with the clinically available, class I, II, and IV HDAC inhibitor, vorinostat significantly downregulated KC
a3.1 transcription in a concentration‐dependent manner, and the plasmalemmal expression of the KC
a3.1 protein and its functional activity were correspondingly decreased. Pharmacological and siRNA‐based HDAC inhibition both revealed the involvement of HDAC2 and HDAC3 in KC
a3.1 transcription through the same mechanism. The downregulation of KC
a3.1 in YMB‐1 was not due to the upregulation of the repressor element‐1 silencing transcription factor, REST and the insulin‐like growth factor‐binding protein 5, IGFBP5. The significant decrease in KC
a3.1 transcription by HDAC inhibition was also observed in the KC
a3.1‐expressing human prostate cancer cell line, PC‐3. These results suggest that vorinostat and the selective HDACis for HDAC2 and/or HDAC3 are effective drug candidates for KC
a3.1‐overexpressing cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.