We previously reported that cisplatin potentiated ileal 5-hydroxytryptamine (5-HT) metabolism and caused pathological changes with an inflammatory response in the delayed phase (72 h) after administration to rats. In the present study, we further investigated the time-dependent effect of cisplatin on ileal 5-HT metabolism and the effects of combining cisplatin and anti-inflammatory drugs on ileal tryptophan hydroxylase expression and pica (the consumption of non-nutritive materials such as kaolin). Cyclooxygenase-2 (COX-2) expression was significantly increased at 24 h after cisplatin (5 mg/kg, intraperitoneal) administration. Cisplatin significantly increased ileal 5-HT content at 48 h after administration and the number of L-tryptophan hydroxylase-expressing cells (i.e., enterochromaffin cells) in the ileal mucosa within 24 h after administration. It also caused a significant increase in the number of substance P-expressing cells. Immunohistochemical double staining revealed that most of the enterochromaffin cells contained substance P. Neither daily treatment with dexamethasone (1 mg/kg, subcutaneous) nor meloxicam (3 mg/kg, subcutaneous), a selective COX-2 inhibitor, affected the cisplatin-induced increase in the number of enterochromaffin cells. Meloxicam had no effect on cisplatin-induced pica, although dexamethasone almost completely inhibited it. This study demonstrated that cisplatin administration induced COX-2 expression and increased the number of enterochromaffin cells in the acute phase (i.e., within 24 h). However, COX-2 expression in the ileum seems to have little direct effect on the mechanism of the induction of enterochromaffin cells and pica.
Elevated mechanical stress on blood vessels associated with hypertension has a direct effect on the function of vascular endothelial cells and vascular smooth muscle cells (VSMCs).In the present study, we have identified the effect of pulsatile pressure stress on cyclooxygenase-2 (COX-2) expression induced by interleukin (IL)-1β in cultured rat VSMCs. VSMCs were isolated from aortic media of Wistar rats and cultured. Pulsatile pressure applied to VSMCs was repeatedly given between either 80 and 160 mmHg, which simulates systolic hypertension, or 80 and 120 mmHg, which simulates normal blood pressure, at a frequency of 4 cycles per min using our original apparatus. Pressure loading that simulates systolic hypertension reduced IL-1β-induced COX-2 expression. The pressure also inhibited the rapid and transient phosphorylation of extracellular signal-regulated kinase (ERK) induced by IL-1β. IL-1β-induced COX-2 expression was significantly inhibited by a specific conventional protein kinase C (PKC) inhibitor. Pressure loading that simulates systolic hypertension also reduced phorbol myristate 13-acetate (PMA) (a PKC activator)-induced COX-2 expression and the rapid and transient phosphorylation of ERK. Pressure loading that simulates normal blood pressure had no effect on IL-1β-and PMA-induced COX-2 expression. The present study shows that pressure stress between 80 and 160 mmHg, which simulates systolic hypertension reduces IL-1β-induced COX-2 expression by affecting a mechanism involving PKC and ERK signaling pathways. Downregulation of COX-2 expression in VSMCs by abnormal pressure stress may further worsen local vascular injury associated with hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.