To elucidate the precise physiological regulation of FGF-23, we characterized the mouse FGF-23 5Ј-flanking region and analyzed its promoter activity. The 5Ј-flanking region of the mouse FGF-23 gene contained a TFIID site (TATA box) and several putative transcription factor binding sites, including MZF1, GATA-1 and c-Ets-1 motifs, but it did not contain the typical sequences of the vitamin D response element. Plasmids encoding 554-bp (pGL/Ϫ0.6), 364-bp (pGL/Ϫ0.4) and 200-bp (pGL/Ϫ0.13) promoter regions containing the TFIID element and ϩ1-bp fragments drove the downstream expression of a luciferase reporter gene in transfection assays. We also found that FGF-23 mRNA was expressed in K-562 erythroleukemia cell lines but not in MC3T3-E1, Raji, or Hep G2 human carcinoma cells. Treatment with 1,25-dihydroxyvitamin D 3 in the presence of high phosphate markedly stimulated pGL/Ϫ0.6 activity, but calcium had no effect. In addition, the plasma FGF-23 levels were affected by the dietary and plasma inorganic phosphate concentrations. Finally, the levels of plasma FGF-23 in vitamin D receptor-null mice were significantly lower than in wild-type mice. The presents study demonstrated that vitamin D and the plasma phosphate level are important regulators of the transcription of the mouse FGF-23 gene. gene regulation; vitamin D receptor; phosphate homeostasis THE HOMEOSTASIS OF PLASMA PHOSPHATE is essential for many biological processes, including skeletal mineralization and energy metabolism. Recent investigations of diseases with abnormal phosphate homeostasis have revealed circulating phosphaturic hormones, collectively called phosphatonin (6, 23). Common clinical features, including hypophosphatemia resulting from renal phosphate wasting and impaired mineralization of bone are shared by X-linked hypophosphatemic rickets (XLH), tumor-induced osteomalacia (TIO), and autosomal-dominant hypophosphatemic rickets (ADHR; see Refs. 28,31,and 32), and the presence of a phosphatonin has been suspected in patients with these diseases because their plasma calcium and parathyroid hormone (PTH) levels are usually normal (8,9).Genetic studies of ADHR and TIO have identified fibroblast growth factor (FGF)-23 as a likely candidate for phosphatonin (28,31). In addition, continuous exposure to recombinant FGF-23 reproduces hypophosphatemic osteomalacia and the inappropriately low plasma levels of 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ; see Ref. 28]. Also, a mutant form of FGF-23 (FGF-23R179Q), which is derived from disease-causing missense mutations of ADHR, is resistant to proteolytic processing that normally converts the biologically functional full-length polypeptide into inactive fragments (3, 33). Furthermore, elevated circulatory levels of FGF-23 occur not only in patients with TIO but also in those with XLH (35). These findings indicate that excess FGF-23 activity causes the hypophosphatemia and impaired mineralization of bone that is associated with phosphatonin (6, 21).In a previous study, we demonstrated that the mutant FGF-23 su...
Osteoclasts possess inorganic phosphate (Pi) transport systems to take up external Pi during bone resorption. In the present study, we characterized Pi transport in mouse osteoclast-like cells that were obtained by differentiation of macrophage RAW264.7 cells with receptor activator of NF-kappaB ligand (RANKL). In undifferentiated RAW264.7 cells, Pi transport into the cells was Na+ dependent, but after treatment with RANKL, Na+-independent Pi transport was significantly increased. In addition, compared with neutral pH, the activity of the Na+-independent Pi transport system in the osteoclast-like cells was markedly enhanced at pH 5.5. The Na+-independent system consisted of two components with Km of 0.35 mM and 7.5 mM. The inhibitors of Pi transport, phosphonoformic acid, and arsenate substantially decreased Pi transport. The proton ionophores nigericin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone as well as a K+ ionophore, valinomycin, significantly suppressed Pi transport activity. Analysis of BCECF fluorescence indicated that Pi transport in osteoclast-like cells is coupled to a proton transport system. In addition, elevation of extracellular K+ ion stimulated Pi transport, suggesting that membrane voltage is involved in the regulation of Pi transport activity. Finally, bone particles significantly increased Na+-independent Pi transport activity in osteoclast-like cells. Thus, osteoclast-like cells have a Pi transport system with characteristics that are different from those of other Na+-dependent Pi transporters. We conclude that stimulation of Pi transport at acidic pH is necessary for bone resorption or for production of the large amounts of energy necessary for acidification of the extracellular environment.
During bone resorption, a large amount of inorganic phosphate (P(i)) is generated within the osteoclast hemivacuole. The mechanisms involved in the disposal of this P(i) are not clear. In the present study, we investigated the efflux of P(i) from osteoclast-like cells. P(i) efflux was activated by acidic conditions in osteoclast-like cells derived by the treatment of RAW264.7 cells with receptor activator of nuclear factor-kappaB ligand. Acid-induced P(i) influx was not observed in renal proximal tubule-like opossum kidney cells, osteoblast-like MC3T3-E1 cells, or untreated RAW264.7 cells. Furthermore, P(i) efflux was stimulated by extracellular P(i) and several P(i) analogs [phosphonoformic acid (PFA), phosphonoacetic acid, arsenate, and pyrophosphate]. P(i) efflux was time dependent, with 50% released into the medium after 10 min. The efflux of P(i) was increased by various inhibitors that block P(i) uptake, and extracellular P(i) did not affect the transport of [(14)C]PFA into the osteoclast-like cells. Preloading of cells with P(i) did not stimulate P(i) efflux by PFA, indicating that the effect of P(i) was not due to transstimulation of P(i) transport. P(i) uptake was also enhanced under acidic conditions. Agents that prevent increases in cytosolic free Ca(2+) concentration, including acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 2-aminoethoxydiphenyl borate, and bongkrekic acid, significantly inhibited P(i) uptake in the osteoclast-like cells, suggesting that P(i) uptake is regulated by Ca(2+) signaling in the endoplasmic reticulum and mitochondria of osteoclast-like cells. These results suggest that osteoclast-like cells have a unique P(i) uptake/efflux system and can prevent P(i) accumulation within osteoclast hemivacuoles.
Treatment with PTH (parathyroid hormone) or a high-P(i) diet causes internalization of the type IIa sodium-dependent phosphate (Na/P(i) IIa) co-transporter from the apical membrane and its degradation in the lysosome. A dibasic amino acid motif (KR) in the third intracellular loop of the co-transporter is essential for protein's PTH-induced retrieval. To elucidate the mechanism of internalization of Na/P(i) IIa, we identified the interacting protein for the endocytic motif by yeast two-hybrid screening. We found a strong interaction of the Na/P(i) IIa co-transporter with a small protein known as the PEX19 (human peroxisomal farnesylated protein; PxF, Pex19p). PEX19 can bind to the KR motif, but not to a mutant with this motif replaced with NI residues. PEX19 is highly expressed in mouse and rat kidney. Western blot analysis indicates that PEX19 is located in the cytosolic and brush-border membrane fractions (microvilli and the subapical component). Overexpression of PEX19 stimulated the endocytosis of the Na/P(i) IIa co-transporter in opossum kidney cells in the absence of PTH. In conclusion, the present study indicates that PEX19 may be actively involved in controlling the internalization and trafficking of the Na/P(i) IIa co-transporter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.