Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disorder, is an inherited disease characterized by the accumulation of intracellular unesterified cholesterol. A solubilizing agent of lipophilic compounds, 2-hydroxypropyl-β-cyclodextrin (HPBCD), is an attractive drug candidate against NPC disease. However, establishment of the optimum dosage of HPBCD remains to be determined. In this study, we evaluated the effective dosage of HPBCD in NPC model (Npc1 / ) mice, and determined serum HPBCD concentrations. Subcutaneous injection of 1000-4000 mg/kg HPBCD improved the lifespan of Npc1 / mice. In addition, liver injury and cholesterol sequestration were significantly prevented by 4000 mg/kg HPBCD in Npc1 / mice. Serum HPBCD concentrations, when treated at the effective dosages (1000-4000 mg/kg), were approximately 1200-2500 µg/mL at 0.5 h after subcutaneous injection, and blood HPBCD concentrations were immediately eliminated in Npc1 / mice. Furthermore, we examined serum HPBCD concentrations when treated at 40000 mg (approximately 2500 mg/kg) in a patient with NPC. We observed that the effective concentration in the in vivo study using Npc1 / mice was similar to that in the patient. In the patient, systemic clearance and the volume of distribution of HPBCD were in accordance with the glomerular filtration rate and extracellular fluid volume, respectively. These results could provide useful information for developing the optimal dosage regimen for HPBCD therapy when administered intravenously to NPC patients.
2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML), acute lymphoblastic leukemia and chronic myeloid leukemia (CML). HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors), and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.
Niemann–Pick Type C disease (NPC) is an autosomal recessive lysosomal storage disorder characterized by progressive neurological deterioration. Previously, we reported that intravenous administration of 2-hydroxypropyl-β-cyclodextrin (HPB-CD) in two patients with NPC had only partial and transient beneficial effects on neurological function. The most likely reason for HPB-CD not significantly improving the neurological deficits of NPC is its inability to cross the blood–brain barrier. Herein, we describe the effects of intrathecal HPB-CD in an eight-year-old patient with a perinatal onset of NPC, administered initially at a dose of 10 mg/kg every other week and increased up to 10 mg/kg twice a week. Clinically, the patient maintained residual neurological functions for two years, at which time nuclear magnetic resonance spectroscopy showed a decreased choline to creatine ratio and increased N-acetylaspartate to creatine ratio, and positron emission tomography revealed increased standardized uptake values. Total-tau in the cerebrospinal fluid (CSF) was also decreased after two years. No adverse effects were observed over the course of treatment. The CSF concentrations of HPB-CD during the distribution phase after the injections were comparable with those at which HPB-CD could normalize cellular cholesterol abnormality in vitro. Further studies are necessary to elucidate the mechanisms of action of HPB-CD in NPC, and to determine the optimal dose and intervals of HPB-CD injection.
The American Society of Clinical Oncology recently published a Clinical Practice Guideline entitled "Appropriate Chemotherapy Dosing for Obesity Adult Patients with Cancer." The panel recommended that full weight (actual weight)-based cytotoxic chemotherapy doses are used to treat obese patients with cancer, particularly when the goal of treatment is cure. However, no study has examined dosage calculation methods used for obese cancer patients in Japan. Here, we retrospectively studied the relationships between chemotherapy dose intensity, the occurrence of adverse events, and treatment outcomes in obese patients undergoing chemotherapy. Patients were divided into two groups: the actual BW group (BWg) was composed of patients receiving dosage amounts calculated using their actual BW (n = 64), and the ideal BWg was composed of patients receiving dosage amounts calculated using their ideal BW (n = 41). There were significant differences in the incidence of Grade 3/4 hematological toxicity in the actual and ideal BWg in solid tumor patients, but not in patients with hematological malignancies. In solid tumor patients with ≥30 body mass index (BMI), the incidence of Grade 3/4 hematological toxicity was significantly lower in the ideal BWg than in the actual BWg. Particularly, in patients with complications, incidence of Grade 4 hematological toxicity was significantly higher in the actual BWg than in the ideal BWg. These results suggest that the tumor type, degree of obesity, complications, and choice of chemotherapy regimen should be considered when determining chemotherapy dosage for obese patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.