With the increasing age of an individual, the chances of being prone to chronic diseases like diabetes or non-curable diseases like Alzheimer’s Syndrome or Parkinson's Syndrome increases. Due to the health issues, elderly must be accompanied by caretakers to monitor their well-being at all times. With growing responsibilities and work pressure, the family members may find it challenging to find a trustworthy caretaker. In such scenarios, an assisted living environment acts as a boon. A normal home embedded with different sensors to monitor an individual’s well-being is called as Ambient Assisted Living(AAL). This living environment detects anomalous behaviour and recognizes human activities. In this research paper, a smart home activity recognition model is proposed and implemented using four machine learning algorithms using six different publicly available datasets. It has been observed that Random Forest machine learning algorithm shows the best accuracy on most of the dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.