Due to the use of internet of things (IoT) devices, communication between different things is effective. The application of IoT in agriculture industryplays a key role to make functionalities easy. Using the concept of IoT and wireless sensor network (WSN), smart farming system has been developedin many areas of the world. Precision farming is one of the branches comes forward in this aspect. Many researchers have developed monitoring andautomation system for different functionalities of farming. Using WSN, data acquisition and transmission between IoT devices deployed in farms will be easy. In proposed technique, Kalman filter (KF) is used with prediction analysis to acquire quality data without any noise and to transmit this data for cluster-based WSNs. Due to the use of this approach, the quality of data used for analysis is improved as well as data transfer overhead is minimized in WSN application. Decision tree is used for decision making using prediction analytics for crop yield prediction, crop classification, soil classification, weather prediction, and crop disease prediction. IoT components, such as and cube (IOT Gateway) and Mobius (IOT Service platform), are integrated in proposed system to provide smart solution for crop growth monitoring to users.
The aim of this study is to design and develop an autonomous fire proof rescue robot. The robot is designed in such a way, that it can traverse through fire and hazardous situations. Further, it will sense and communicate information regarding these situations in real time with the server. The robot is fixed with multi-sensors and further, a driver circuit has been integrated for communication in these hazardous situations through Zigbee and a data acquisition system (DAQ). In mechanical design first, a 3D solid model is generated using Solid works software to understand the basic structure of robot which provides information regarding robotic platform, size and location of various components. The developed fire fighting robot is a predominately outdoor ground-based mobile robotic system with onboard subdual systems that can traverse autonomously in the hazardous environment. The robot is designed such that it can traverse into the fire and send information regarding the fire behaviour and also the images of the victim's location by using a camera. Further, a mathematical model which describes the kinematics and dynamic behaviour of robot motion are done. V-REP is used to create the simulation of the robot in a fire simulated fire environment. Finally, for the path planning, various techniques are discussed such as V-REPs inbuilt path planning module, A*, Fuzzy logic and artificial potential fields.
Cloud is a general term used in organizations that host various service and deployment models. As cloud computing offers everything a service, it suffers from serious security issues. In addition, the multitenancy facility in the cloud provides storage in the third party data center which is considered to be a serious threat. These threats can be faced by both self-providers and their customers. Hence, the complexity of the security should be increased to a great extend such that it has an effective defense mechanism. Although data isolation is one of the remedies, it could not be a total solution. Hence, a complete architecture is proposed to provide complete defense mechanism. This defense mechanism ensures that the threats are blocked before it invades into the cloud environment. Therefore, we adopt the mechanism called artificial immune system which is derived from biologically inspired computing. This security strategy is based on artificial immune algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.