Recent advancements in the bioinks and three-dimensional (3D) bioprinting methods used to fabricate vascular constructs are summarized herein. Critical biomechanical properties required to fabricate an ideal vascular graft are highlighted, as well as various testing methods have been outlined to evaluate the bio-fabricated grafts as per the Food and Drug Administration (FDA) and International Organization for Standardization (ISO) guidelines. Occlusive artery disease and cardiovascular disease are the major causes of death globally. These diseases are caused by the blockage in the arteries, which results in a decreased blood flow to the tissues of major organs in the body, such as the heart. Bypass surgery is often performed using a vascular graft to re-route the blood flow. Autologous grafts represent a gold standard for such bypass surgeries; however, these grafts may be unavailable due to the previous harvesting or possess a poor quality. Synthetic grafts serve well for medium to large-sized vessels, but they fail when used to replace small-diameter vessels, generally smaller than 6 mm. Various tissue engineering approaches have been used to address the urgent need for vascular graft that can withstand hemodynamic blood pressure and has the ability to grow and remodel. Among these approaches, 3D bioprinting offers an attractive solution to construct patient-specific vessel grafts with layered biomimetic structures.
4D printing can be defined as the fabrication of structures using smart materials that allow the final object to change its shape, properties, or function in response to an external stimulus such as light, heat, or moisture. The available technologies, materials, and applications have evolved significantly since their first development in 2013, with prospective applications within the aerospace, manufacturing, and soft robotic industries. This review focuses on the printing technologies and smart materials currently available for fabricating these structures. The applications of 4D printing within biomedicine are explored with a focus on tissue engineering, drug delivery, and artificial organs. Finally, some ideas for potential uses are proposed. 4D printing is making its mark with seemingly unlimited potential applications, however, its use in mainstream medical treatments relies on further developments and extensive research investments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.