In this work, we consider the Vehicle Routing Problem with Simultaneous Delivery and Pickup, and constrained by time windows, to improve the performance and responsiveness of the supply chain by transporting goods from one location to another location in an efficient manner. In this class of problem, each customer demands a quantity to be delivered as a part of the forward supply service and another quantity to be picked up as a part of the reverse recycling service, and the complete service has to be done simultaneously in a single visit of a vehicle, and the objective is to minimize the total cost, which includes the traveling cost and dispatching cost for operating vehicles. We propose a Mixed Integer Linear Programming (MILP) model for solving this class of problem. In order to evaluate the performance of the proposed MILP model, a comparison study is made between the proposed MILP model and an existing MILP model available in the literature, with the consideration of heterogeneous vehicles. Our study indicates that the proposed MILP model gives tighter lower bound and also performs better in terms of the execution time to solve each of the randomly generated problem instances, in comparison with the existing MILP model. In addition, we also compare the proposed MILP model (assuming homogeneous vehicles) with the existing MILP model that also considers homogeneous vehicles. The results of the computational evaluation indicate that the proposed MILP model gives much tighter lower bound, and it is competitive to the existing MILP model in terms of the execution time to solve each of the randomly generated problem instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.