Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine leads to a serious disease characterized by a delayed and defective adaptive immune response. It is hypothesized that a suboptimal innate immune response is responsible for the disease pathogenesis. In the study presented here we tested this hypothesis and identified several nonstructural proteins (NSPs) with innate immune evasion properties encoded by the PRRS viral genome. Four of the total ten PRRSV NSPs tested were found to have strong to moderate inhibitory effects on beta interferon (IFN-) promoter activation. The strongest inhibitory effect was exhibited by NSP1 followed by, NSP2, NSP11, and NSP4. We focused on NSP1␣ and NSP1 (self-cleavage products of NSP1 during virus infection) and NSP11, three NSPs with strong inhibitory activity. All of three proteins, when expressed stably in cell lines, strongly inhibited double-stranded RNA (dsRNA) signaling pathways. NSP1 was found to inhibit both IFN regulatory factor 3 (IRF3)-and NF-B-dependent gene induction by dsRNA and Sendai virus. Mechanistically, the dsRNA-induced phosphorylation and nuclear translocation of IRF3 were strongly inhibited by NSP1. Moreover, when tested in a porcine myelomonocytic cell line, NSP1 inhibited Sendai virus-mediated activation of porcine IFN- promoter activity. We propose that this NSP1-mediated subversion of the host innate immune response plays an important role in PRRSV pathogenesis.
Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genomewide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process.RNA interference | transcription and replication | host cell factors for virus infection
Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ-specific CD4 T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α-specific CD8 T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E.
The objective of this study was to identify porcine reproductive and respiratory syndrome virus (PRRSV)-encoded proteins that are responsible for the inhibition of TNF-α expression and the mechanism(s) involved in this phenomenon. Using a TNF-α promoter reporter system, the non-structural protein 1 (Nsp1) was found to strongly suppress the TNF-α promoter activity. Such inhibition takes place especially at the promoter's proximal region. Both Nsp1α and Nsp1β, the two proteolytic fragments of Nsp1, were shown to be involved in TNF-α promoter suppression. Furthermore, using reporter plasmids specific for transcription factors (TFs) that bind to TNF-α promoter, Nsp1α and Nsp1β were demonstrated to inhibit the activity of the TFs that bind CRE-κB(3) and Sp1 elements respectively. Subsequent analyses showed that Nsp1α moderately inhibits NF-κB activation and that Nsp1β completely abrogates the Sp1 transactivation. These findings reveal one of the important mechanisms underlying the innate immune evasion by PRRSV during infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.