Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in the perinatal period. Hypothermia is the only approved intervention for neonatal HI encephalopathy. However, this treatment is only partially protective, has a narrow therapeutic time window after birth and only can be used to treat full-term infants. Consequently, additional therapies are critically needed. Inflammation is an important contributing factor to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins with anti-inflammatory properties. We have previously shown that IAIPs reduce neuronal cell death and improve behavioral outcomes when given after carotid artery ligation, but before hypoxia in male neonatal rats. The objective of the current study was to investigate the neuroprotective effects of treatment with IAIPs given immediately or 6 h after HI in both male and female neonatal rats. HI was induced with the Rice-Vannucci method in postnatal (P) day 7 rats. After ligation of the right common carotid artery, P7 rats were exposed to 90 min of hypoxia (8% oxygen). Human plasma-derived IAIPs or placebo (phosphate buffered saline) was given at zero, 24, and 48 h after HI. Brains were perfused, weighed and fixed 72 h after HI at P10. In a second, delayed treatment group, the same procedure was followed except that IAIPs or placebo were given at 6, 24 and 48 h after HI. Separate sham-operated, placebo-treated groups were exposed to identical protocols but were not exposed to carotid artery ligation and remained in room air. Rat sex was recorded. The effects of IAIPs on HI brain injury were examined using histopathological
Inter-alpha Inhibitor Proteins (IAIPs) are a family of related serine protease inhibitors. IAIPs are important components of the systemic innate immune system. We have identified endogenous IAIPs in the central nervous system (CNS) of sheep during development and shown that treatment with IAIPs reduces neuronal cell death and improves behavioral outcomes in neonatal rats after hypoxic-ischemic brain injury. The presence of IAIPs in CNS along with their exogenous neuroprotective properties suggests that endogenous IAIPs could be part of the innate immune system in CNS. The purpose of this study was to characterize expression and localization of IAIPs in CNS. We examined cellular expressions of IAIPs in vitro in cultured cortical mouse neurons, in cultured rat neurons, microglia, and astrocytes, and in vivo on brain sections by immunohistochemistry from embryonic (E) day-18 mice and postnatal (P) day-10 rats. Cultured cortical mouse neurons expressed the light chain gene Ambp and heavy chain genes Itih-1, 2, 3, 4, and 5 mRNA transcripts and IAIPs proteins. IAIP proteins were detected by immunohistochemistry in cultured cells as well as brain sections from E18 mice and P10 rats. Immunoreactivity was found in neurons, microglia, astrocytes and oligodendroglia in multiple brain regions including cortex and hippocampus, as well as within both the ependyma and choroid plexus. Our findings suggest that IAIPs are endogenous proteins expressed in a wide variety of cell types and regions both in vitro and in vivo in rodent CNS. We speculate that endogenous IAIPs may represent endogenous neuroprotective immunomodulatory proteins within the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.