α-Synuclein is a protein linked to various synuclein-associated diseases (“synucleinopathies”), including Parkinson’s disease, dementia with Lewy Bodies, and multiple system atrophy, and is highly expressed in the central nervous system and in erythrocytes. Moreover, α-synuclein-containing erythrocyte-derived extracellular vesicles may be involved in the pathogenesis of synucleinopathies and their progression across the blood–brain barrier. Several post-translational modifications of α-synuclein have been reported in brain inclusions, including S129 phosphorylation, but fewer have been found in erythrocytes. In this study, we analyzed the post-translational modifications of erythrocyte α-synuclein using liquid chromatography-mass spectrometry. We found that all lysine residues in the α-synuclein protein could be modified by acetylation, glycation, ubiquitination, or SUMOylation, but that phosphorylation, nitration, and acylation were uncommon minor post-translational modifications in erythrocytes. Since the post-translational modification of lysine residues has been implicated in both membrane association and protein clearance, our findings provide new insight into how synucleinopathies may progress and suggest possible therapeutic strategies designed to target α-synuclein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.