We characterized a rice dwarf mutant, ebisu dwarf ( d2 ). It showed the pleiotropic abnormal phenotype similar to that of the rice brassinosteroid (BR)-insensitive mutant, d61 . The dwarf phenotype of d2 was rescued by exogenous brassinolide treatment. The accumulation profile of BR intermediates in the d2 mutants confirmed that these plants are deficient in late BR biosynthesis. We cloned the D2 gene by map-based cloning. The D2 gene encoded a novel cytochrome P450 classified in CYP90D that is highly similar to the reported BR synthesis enzymes. Introduction of the wild D2 gene into d2-1 rescued the abnormal phenotype of the mutants. In feeding experiments, 3-dehydro-6-deoxoteasterone, 3-dehydroteasterone, and brassinolide effectively caused the lamina joints of the d2 plants to bend, whereas more upstream compounds did not cause bending. Based on these results, we conclude that D2/CYP90D2 catalyzes the steps from 6-deoxoteasterone to 3-dehydro-6-deoxoteasterone and from teasterone to 3-dehydroteasterone in the late BR biosynthesis pathway.
Summary Molecular genetic and physiological studies on brassinosteroid (BR)‐related mutants of dicot plants have revealed that BRs play important roles in normal plant growth and development. However, little is known about the function of BR in monocots (grasses), except for the phenotypic analysis of a rice mutant partially insensitive to BR signaling. To investigate the function of BR in monocots, we identified and characterized BR‐deficient mutants of rice, BR‐deficient dwarf1 (brd1). The brd1 mutants showed a range of abnormalities in organ development and growth, the most striking of which were defects in the elongation of the stem and leaves. Light microscopic observations revealed that this abnormality was primarily owing to a failure in the organization and polar elongation of the leaf and stem cells. The accumulation profile of BR compounds in the brd1 mutants suggested that these plants may be deficient in the activity of BR C‐6 oxidase. Therefore, we cloned a rice gene, OsDWARF, which has a high sequence similarity to the tomato C‐6 oxidase gene, DWARF. Introduction of the wild‐type OsDWARF gene into brd1 rescued the abnormal phenotype of the mutants. The OsDWARF gene was expressed at a low level in all of the examined tissues, with preferential expression in the leaf sheath, and the expression was negatively regulated by brassinolide treatment. On the basis of these findings, we discuss the biological function of BRs in rice plants.
BackgroundRecent advances in bronchoscopy, such as transbronchial biopsy (TBB) using endobronchial ultrasonography with a guide sheath (EBUS-GS), have improved the diagnostic yield of small-sized peripheral lung lesions. In some cases, however, it is difficult to obtain adequate biopsy samples for pathological diagnosis. Adequate prediction of the diagnostic accuracy of TBB with EBUS-GS is important before deciding whether bronchoscopy should be performed.MethodsWe retrospectively reviewed 149 consecutive patients who underwent TBB with EBUS-GS for small-sized peripheral lung lesions (≤30 mm in diameter) from April 2012 to March 2013. We conducted an exploratory analysis to identify clinical factors that can predict an accurate diagnosis by TBB with EBUS-GS. All patients underwent thin-section chest computed tomography (CT) scans (0.5-mm slices), and the CT bronchus sign was evaluated before bronchoscopy in a group discussion. The final diagnoses were pathologically or clinically confirmed in all studied patients (malignant lesions, 110 patients; benign lesions, 39 patients).ResultsThe total diagnostic yield in this study was 72.5 % (95 % confidence interval: 64.8–79.0 %). Lesion size, lesion visibility on chest X-ray, and classification of the CT bronchus sign were factors significantly associated with the definitive biopsy result in the univariate analysis. In the multivariate analysis, only the CT bronchus sign remained as a significant predictive factor for successful bronchoscopic diagnosis. The CT bronchus sign was also significantly associated with the EBUS findings of the lesions.ConclusionOur results suggest that the CT bronchus sign is a powerful predictive factor for successful TBB with EBUS-GS.
To elucidate the mechanism of internodal elongation in rice (Oryza sativa L.), we analyzed genes encoding xyloglucan endotransglycosylase (XET), a cell wall-loosening enzyme essential for cell elongation. Four rice XET-related (XTR) genes, OsXTR1, OsXTR2, OsXTR3, and OsXTR4, were isolated and their expression patterns in rice plants determined. The expression of the four XTR genes showed different patterns of organ specificity and responses to several plant hormones. OsXTR1 and OsXTR3 were up-regulated by gibberellin and brassinosteroids, whereas OsXTR2 and OsXTR4 showed no clear response to these hormones. Expression of the four XTR genes was also investigated in elongating internodes at different developmental stages. OsXTR1 and OsXTR3 were preferentially expressed in the elongating zone of internodes, while OsXTR2 and OsXTR4 were expressed in nodes and in the divisional and elongating zones of internodes. In three genetic mutants with abnormal heights, the expression of OsXTR1 and OsXTR3 correlated with the height of the mutants, whereas no such correlation was observed for OsXTR2 and OsXTR4. Based on these observations, we discuss the roles that OsXTR1 and OsXTR3 may play in internodal elongation in rice.
Large variation in genome size as determined by the nuclear DNA content and the mitotic chromosome size among diploid rice species is revealed using flow cytometry and image analyses. Both the total chromosomal length (r = 0.939) and the total chromosomal area (r = 0.927) correlated well with the nuclear DNA content. Among all the species examined, Oryza australiensis (E genome) and O. brachyantha (F genome), respectively, were the largest and smallest in genome size. O. sativa (A genome) involving all the cultivated species showed the intermediate genome size between them. The distribution patterns of genome-specific repetitive DNA sequences were physically determined using fluorescence in situ hybridization (FISH). O. brachyantha had limited sites of the repetitive DNA sequences specific to the F genome. O. australiensis showed overall amplification of genome-specific DNA sequences throughout the chromosomes. The amplification of the repetitive DNA sequences causes the variation in the chromosome morphology and thus the genome size among diploid species in the genus Oryza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.