Exopolysaccharides (EPS) particularly, from Lactic acid bacteria have received increasing attention in food, medical, and pharmaceutical applications. The present work aims to isolate, characterize and identify exopoly saccharide-producing bacteria from fermented fruits and vegetables and dairy products. A total of 55 isolates were isolated from fermented fruits, vegetables, and dairy products depending on the mucoid appearance of the colonies. Based on total EPS production, the most promising nine strains were selected, phenotypically and genotypically characterized. They were facultative anaerobe, arranged in pairs/chains (cocco bacillus), oxidase, and catalase-negative, non-spore forming and nonmotile Gram-positive bacteria. All the strains were capable of growing at optimum pH between 5-7, tolerate to NaCl up to 7% (w/v), growing at 20-37°C with optimum growth at 30°C, no growth was observed at 45°C. In addition they could utilize small range of organic compounds, except isolate S1 was differ from the others by their ability to utilize a varied range of organic compounds. Construction of phylogenetic tree, on the basis of partial 16S rRNA gene sequences indicated that isolate S1 was similar to Leuconostoc citreum with similarity of 91.3%, while, isolates S2 and S3 were similar to Leu. fallax and Leu. mesenteroides with similarity of 99.40 % and 97.73%, respectively. Isolates S4, S5, S7, S8, and S9 were similar to Leu. holzaapfelii with similarity of 98.3, 98.7 and 99.8, 98.5 and 98.1, respectively, while isolate S6 was similar to Leu. lactis with similarity of 97.9%. None of sugars such as lactose, glucose, and fructose except sucrose were support EPS production from these strains. The highest yield of EPS was recorded for isolates S6, S1 and S7 which were 61.90, 61.80 and 60 gl -1 , respectively, followed by isolates S4, S9, S5 and S8 which were 58.40, 53.06, 51.61 and 33.53 gl -1 , respectively. Although, the lowest yield was observed for the isolates S3 and S2 which were 22.08 and 18.80 g l -1 , respectively. Finally, it could be concluded that EPS production from these strains in the current study, considering them to be the alternative choice for enhancing production of EPS with increased yields, with promising realistic importance in food, pharmaceutical, as well as dairy industries.
Exopolysaccharides (EPSs) are novel functional additives for low-fat yogurt. Pharmaceutical, medical, and food industries are using more LAB-based EPSs. In this study, Leuconostoc spp. was used to produce ninth bacterial EPSs in a modified molasses medium. Production of EPSs was concentration-dependent on all stains and the highest yield was obtained from the S3 strain (55.23 g/l), followed by S6 (49.95 g/l), S8 (45.68 g/l), and S7 (44.23), respectively. HPLC and FTIR analysis showed that all purified EPSs from Leuconostoc citreum (S3) and Leuconstoc holzaapfelii (S8) were related to exopolysaccharide glucan. Anticancer activity of all EPSs samples (EPSs1-9) against Caco-2 cells and normal MCR-5 cells were investigated using MTT assay. The results revealed that Caco-2 cells were more sensitive than the normal MCR-5 cells. The highest anticancer activity against Caco-2 cancer cells was recorded for EPS8 (IC50 = 22.94 µg/ml, SI=3.73), followed by EPS3 (IC50 = 36.15 µg/ml, SI=8.72), EPS1 (IC50 = 50.01 µg/ml, SI=3.73), and EPS4 (IC50 = 94.90 µg/ml, SI=3.26), respectively. The lowest cytotoxicity was recorded for EPS5 (IC50 = 130.5 µg/ml). The most active EPSs (EPS3 and EPS8) were used as fat replacements and stabilizers in low-fat set yogurt at non-toxic concentrations (0.4, 0.8, and 1.2%). EPS3 and EPS8 improved the low-fat yogurt’s organoleptic and rheological properties. EPS8 had the highest water holding capacity (77.26%), viscosity (3660 CP), and lowest syneresis (22.95%) and whey off (0.6 ml). Low-fat set yogurt enhanced with EPS3 and EPS8 recorded the highest sensory evaluation values with overall acceptability, especially EPS3b, EPS3c, EPS8c, and EPS8b; the total score point of 97.50, 97.43, 96.51, and 96.36, respectively in fresh age compared to control yogurt (92.64). In conclusion, Leuconostoc EPSs, especially EPS8, can be explored for anti-cancer effects on Caco-2 colorectal cancer cells. It could also improve the rheological and organoleptic qualities of low-fat set yogurt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.