In this study, we introduce a new modification of fractional reduced differential transform method (m-FRDTM) to find exact and approximate solutions for nonhomogeneous linear multiterm time-fractional diffusion equations (MT-TFDEs) of constant coefficients in a bounded domain with suitable initial conditions. Different applications in two and three fractional order terms are given to illustrate our new modification. The approximate solutions are given in the form of series solutions. The results show that the m-FRDTM for MT-TFDEs is a powerful method and can be generalized to other types of multiterm time-fractional equations.
In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.