For electric vehicles (EVs) to realise the UK government’s goal of mass-market dominance, there are surmountable hurdles to resolve before car users accept this radical shift in motoring technology. This study focuses on recent EV adopters who experience a new phenomenon described as charge point trauma (CPT). In contrast to range anxiety, we define CPT as the psychological, physiological, and behavioural condition where EV user’s experiences develop trauma or anxiety in response to the availability of sufficient charge points, locations, payment processes, and operability. Resolving impediments to EV usage reduces long-term growth barriers, which we argue can subsequently lower or even eliminate EV driver anxiety. We conclude that range anxiety still plays a major part in overall EV driver trauma, and after deep analysis of our case study data conclude that a trauma other than range anxiety exists at the charge point. To mitigate this phenomenon, we propose a regulatory framework comprising a series of stimuli to encourage EV uptake. These recommendations should be targeted at regulating a new generation of EV charging stations to meet operational parity with current fossil fuel filling stations by ensuring they are always on, available in sufficient numbers, accessible and operable as part of the UK motorway and major trunk network. This will de-risk EV purchasing and stimulate their adoption in this embryonic stage, reducing CPT in the process.
Mobile Applications (Apps) offer numerous advantages related to entertainment, communication, monitoring and sensing to name a few. In this study, a Gyroscope Explorer Apps is employed for data gathering of azimuth, pitch, and roll. The mobile phone is carried by Lego Mindstorms (EV3), in which it travels the ladder into the different angles: 4.13°, 7.77°, 10.81°, and 12.80°. The data collected was classified into eight classes: 4.13°uphill,
Recent transformations from internal combustion engines (ICE) to electric vehicles (EVs) are challenged by limited the driving range per charge, thereby requiring the improvement or substantial deployment of rapid charging infrastructure to stimulate sufficient confidence in EV drivers. This study aims to establish the necessary level of EV motorway service station infrastructure for the United Kingdom (UK) based market. The investigation is founded on increasing the appropriate rapid charger availability and shorter charging times. EV charging patterns are determined, focusing on two Volkswagen iD3 EV models by measuring power curves across field-based rapid chargers at one-minute intervals. Datasets are analysed throughout rapid charging field tests. Additionally, variance synthesis is applied to establish variables within this study’s assessment for rapid charger capacity requirements in the UK. The operational performance for the utilised rapid chargers is correspondingly recorded, whilst the EV range is calculated at 3 miles per kWh, revealing a mean power delivery rate of just 27 kW per hour using a 50 kW rapid charger. Time-of-day charging sessions are used to generate data that is then amalgamated into our previous study data, confirming that rapid charging points on UK motorways are used primarily for EV journey range extension. If fully utilised for an entire 24h period, 434 chargers (with a variance consolidation number of 81) are required to service the UK-based motorway EV user base. Moreover, this study establishes that simply replacing current fuel pumps with individual rapid chargers on a like-for-like basis reduces availability and support for novel and existing users and may impact short-term grid availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.