Heat exchangers are key components in many of the devices seen in our everyday life. They are employed in many applications such as land vehicles, power plants, marine gas turbines, oil refineries, air-conditioning, and domestic water heating. Their operating mechanism depends on providing a flow of thermal energy between two or more mediums of different temperatures. The thermo-economics considerations of such devices have set the need for developing this equipment further, which is very challenging when taking into account the complexity of the operational conditions and expansion limitation of the technology. For such reasons, this work provides a systematic review of the state-of-the-art heat exchanger technology and the progress towards using nanofluids for enhancing their thermal-hydraulic performance. Firstly, the general operational theory of heat exchangers is presented. Then, an in-depth focus on different types of heat exchangers, plate-frame and plate-fin heat exchangers, is presented. Moreover, an introduction to nanofluids developments, thermophysical properties, and their influence on the thermal-hydraulic performance of heat exchangers are also discussed. Thus, the primary purpose of this work is not only to describe the previously published literature, but also to emphasize the important role of nanofluids and how this category of advanced fluids can significantly increase the thermal efficiency of heat exchangers for possible future applications.
Coolants play a major role in the performance of heat exchanging systems. In a marine gas turbine engine, an intercooler is used to reduce the compressed gas temperature between the compressor stages. The thermophysical properties of the coolant running within the intercooler directly influence the level of enhancement in the performance of the unit. Therefore, employing working fluids of exceptional thermal properties is beneficial for improving performance in such applications, compared to conventional fluids. This paper investigates the effect of utilizing nanofluids for enhancing the performance of a marine gas turbine intercooler. Multi-walled carbon nanotubes (MWCNTs)-water with nanofluids at 0.01–0.10 vol % concentration were produced using a two-step controlled-temperature approach ranging from 10 °C to 50 °C. Next, the thermophysical properties of the as-prepared suspensions, such as density, thermal conductivity, specific heat capacity, and viscosity, were characterized. The intercooler performance was then determined by employing the measured data of the MWCNTs-based nanofluids thermophysical properties in theoretical formulae. This includes determining the intercooler effectiveness, heat transfer rate, gas outlet temperature, coolant outlet temperature, and pumping power. Finally, a comparison between a copper-based nanofluid from the literature with the as-prepared MWCNTs-based nanofluid was performed to determine the influence of each of these suspensions on the intercooler performance.
Today, the optimal use of non-renewable energy sources, reducing pollution, and increasing the efficiency of power-generating cycles are of particular importance. There are several ways to increase the efficiency of gas turbines; one that has recently attracted attention is to use an intercooler. However, the efficiency of the heat exchanger used in intercoolers depends on the type of heat exchanger, the characteristics of the operating fluid and the thermal boundary layers, and the pump speed. Improving the thermophysical properties of the working fluid is a passive method of increasing heat transfer, which has attracted the attention of those researching engineering applications. The current review addresses the latest methods of improving gas turbine efficiency using nanofluids and includes experimental and numerical studies. First, the general principles governing turbines are described, then the commonly used types of heat exchangers are introduced. Finally, studies on the use of nanofluids in heat exchangers are reviewed. The technology of producing nanoparticles that can be used in heat exchangers is also discussed. This review article can provide the reader with comprehensive information on making nanofluids and using them in heat exchangers used as intercoolers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.