This paper highlights a robust optimization and power management algorithm that supervises the energy transfer flow to meet the photovoltaic (PV) electric vehicle demand, even when the traction system is in motion. The power stage of the studied system consists of a triple-junction PV generator as the main energy source, a lithium-ion battery as an auxiliary energy source, and an electric vehicle. The input–output signal adaptation is made by using a stage of energy conversion. A bidirectional DC-DC buck-boost connects the battery to the DC-link. Two unidirectional boost converters interface between the PV generator and the DC link. One is controlled with a maximum power point tracking (MPPT) algorithm to reach the maximum power points. The other is used to control the voltage across the DC-link. The converters are connected to the electric vehicle via a three-phase inverter via the same DC-link. By considering the nonlinear behavior of these elements, dynamic models are developed. A robust nonlinear MPPT algorithm has been developed owing to the nonlinear dynamics of the PV generator, metrological condition variations, and load changes. The high performance of the MPPT algorithm is effectively highlighted over a comparative study with two classical P & O and the fuzzy logic MPPT algorithms. A nonlinear control based on the Lyapunov function has been developed to simultaneously regulate the DC-link voltage and control battery charging and discharging operations. An energy management rule-based strategy is presented to effectively supervise the power flow. The conceived system, energy management, and control algorithms are implemented and verified in the Matlab/Simulink environment. Obtained results are presented and discussed under different operating conditions.
This paper deals with voltage control in a buck DC-DC converter. In fact, dynamic mathematical equations describing the principle behavior of the above system have been derived. Due to the nonlinearity of the established model, a nonlinear control algorithm is adopted. It is based on the sliding mode control approach. To highlight the performance of the latter, a comparative study with four control algorithms is carried out. The validity of the model and the performance of the conceived algorithms are verified in simulation. Both the system and the algorithm controls are implemented in the Matlab/Simulink environment. Extensive results under different operational conditions are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.