Abstract-Vibration analysis is essential in improving condition monitoring and fault diagnostics of rotating machinery. Many signal analysis methods are able to extract useful information from vibration data. Currently, the most of these methods use spectral analysis based on Fourier Transform (FT). However, these methods present some limitations; it is the case of non-stationary signals. In the present work, we are interested to the vibration signal analysis by the Wavelet Transform (WT). The WT is one of the most important methods for signal processing; it is especially suitable for non-stationary vibration measurements obtained from accelerometer sensors. The monitoring results indicate that the WT can diagnose the abnormal change in the measured data.
This paper deals with non linear system monitoring, based on a combined use of Principal Components Analysis (PCA) and fuzzy logic to process and quality monitoring. PCA coupled to fuzzy logic was used to estimate the fault or defect according to the dynamic changes in the process inputs outputs characterized by T2 Hoteling and Squared Prediction Error (SPE). Correlation between the relevant process variables and the importance of defects/faults was obtained by a reliable selection of a reduced set of relevant descriptors. The effectiveness of the computing procedure based on fuzzy rule proved by its application to quality estimation of the solidification process in continuous casting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.