State reconstruction approach is very useful for sensor fault isolation, reconstruction of faulty measurement and the determination of the number of components retained in the principal components analysis (PCA) model. An extension of this approach based on a Nonlinear PCA (NLPCA) model is described in this paper. The NLPCA model is obtained using five layer neural network. A simulation example is given to show the performances of the proposed approach.
The present study aims at developing a method to extract single sweep event-related potentials obtained with Eriksen's flanker task. Unlike previous methods, no a priori assumptions on the characteristics of signal and noise are necessary. The method is based on the wavelet decomposition, bootstrap and a statistical determination of the reliable frequency coefficients across the individual signals at each time point: significant coefficients will be conserved, whereas the other ones will be set to zero. After removing the unsystematic coefficients (i.e. the noise), the signal is reconstructed, allowing to keep only the components of the event-related potentials. The performances of the method are evaluated with both simulated data and real event-related potential recordings, and compared with other methods.
Evoked Potentials are induced by visual or auditory stimulation. The Evoked Potentials represent transient electrical activities of some limited brain regions. The signal-noise ratio (SNR) of the EPs is typically around -10 dB. In order to study brain activities related to information processing in the brain, one has to “extract” the single EPs from the noise. We propose a method does not require a priori information concerning the characteristics (time, frequency) of the signal and does not use a template. The method proposed in this work use the wavelet transform associated with a statistical test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.