Pedestrian safety has been evaluated based on the mean number of pedestrian-involved collisions. Traffic conflicts have been used as a data source to supplement collision data because of their higher frequency and lower damage. Currently, the main source of traffic conflict observation is through video cameras that can efficiently gather rich data but can be limited by weather and lighting conditions. The utilization of wireless sensors to gather traffic conflict data can augment video sensors because of their robustness to adverse weather conditions and poor illumination. This study presents a prototype of a safety assessment system that utilizes ultra-wideband wireless sensors to detect traffic conflicts. A customized variant of time-to-collision is used to detect conflicts at different severity thresholds. Field trials are conducted using vehicle-mounted beacons and a phone to simulate sensors on vehicles and smart devices on pedestrians. Proximity measures are calculated in real-time to alert smartphones and prevent collisions, even in adverse weather conditions. Validation is conducted to assess the accuracy of time-to-collision measurements at various distances from the phone. Several limitations are identified and discussed, along with recommendations for improvement and lessons learned for future research and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.